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Abstract:
Introduction/purpose: Traffic safety and reliable driver selection are the
key components of modern transport systems. The aim of this paper
is to improve the evaluation process of candidates performance in driv-
ing tests by the applying multi-criteria decision-making and metaheuristic
approach. Based on the results obtained using the Vienna Test System,
a TOPSIS-based model with adaptive weighting of evaluation criteria is
proposed.
Methods: Theweights of the TOPSISmethodwere optimized using three
metaheuristic algorithms: Genetic Algorithm (GA), Ant Colony Optimiza-
tion (ACO), and Artificial Bee Colony (ABC) algorithm. Two objective
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functions were used during optimization — the AUC and the F1-score
— to analyze their impact on model accuracy and stability. The experi-
mental framework consisted of three parts: (1) comparison of GA, ACO,
and ABC performance using the AUC as the objective function, (2) anal-
ogous comparison using the F1-score as the objective function, and (3)
cross-comparison between AUC and F1-score optimized models.
Results: The obtained results indicate that both the choice of metaheuris-
tic algorithm and the objective function significantly influence the perfor-
mance of the TOPSISmethod. AUC-based optimization resulted in more
stable models and a better balance between successful and unsuccess-
ful candidates, while F1-based optimization achieved higher sensitivity
and better identification of successful candidates.
Conclusions: Applying metaheuristic algorithms for weight optimization
within the TOPSIS framework enables adaptive and more reliable can-
didate ranking, contributing to the development of intelligent driver se-
lection systems and improved traffic safety. The results confirm that an
appropriate choice of an optimization algorithm and an objective function
can significantly enhance model accuracy and robustness.
Key words: TOPSIS, multi-criteria decision making, metaheuristics, GA,
ACO, ABC, Vienna Test System.

Introduction
Traffic safety represents one of the key challenges of modern societies,

as road accidents continue to cause significant human, economic, and so-
cial consequences worldwide. According to international reports, the hu-
man factor remains the dominant cause of most traffic incidents, which em-
phasizes the importance of systematically assessing drivers abilities and
readiness. Consequently, the process of selecting candidates for driving
licenses plays a crucial role in improving overall traffic safety levels. In ad-
dition to theoretical and practical training, the evaluation of psychomotor,
perceptual, and cognitive abilities constitutes an essential part of the driver
selection process. In contemporary practice, standardized psychodiagnos-
tic systems based on objective measurement instruments have become
highly relevant. Among them, the Vienna Test System (VTS) (Schuhfried,
2013) is one of the most widely used and reliable tools, providing com-
prehensive assessments of numerous parameters important for safe ve-
hicle operation — including attention, reaction speed, visual perception,
risk-taking tendencies, and motor coordination. Such testing results of-
fer valuable input for decision-making regarding candidates driving abili-
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ties but simultaneously pose a multi-criteria decision problem, where nu-
merous factors of unequal importance must be objectively combined. In
such decision-making contexts, the use of multi-criteria decision-making
(MCDM) methods are particularly justified. One of the most prominent
among them is the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) (Hwang & Yoon, 1981), recognized for its interpretabil-
ity and capability to rank alternatives according to their distance from the
ideal and anti-ideal solutions (Ren et al., 2021; Huang et al., 2020). How-
ever, one of the key challenges in applying TOPSIS lies in determining the
weights of criteria, since the final decision outcome depends directly on
their distribution. Traditional approaches to assigning weights often rely
on subjective expert judgment or predefined assumptions, which may limit
the objectivity and accuracy of the model. With advances in computational
intelligence, metaheuristic algorithms have emerged as a powerful alterna-
tive for optimizing weighting schemes based on empirical data and clearly
defined objective functions. Among them, the Genetic Algorithm (GA) (Hol-
land, 1975), Ant Colony Optimization (ACO) (Dorigo &Gambardella, 1997),
and Artificial Bee Colony (ABC) (Karaboga, 2005; Pham et al., 2006) have
demonstrated notable effectiveness in solving complex optimization tasks,
especially those that are nonlinear, multidimensional, or lack analytical for-
mulations. This paper explores the application of these three metaheuristic
algorithms to optimize the weights of criteria within the TOPSISmethod, us-
ing data obtained from the Vienna Test System applied to a group of can-
didates for the driving test. Furthermore, two distinct objective functions
— the F1-score and the Area Under the Receiver Operating Character-
istic Curve (AUC) — are introduced to analyze how different optimization
goals affect model performance. A systematic comparison of GA, ACO and
ABC efficiency for each objective function is performed, followed by an as-
sessment of the differences between F1-score and AUC-optimizedmodels.
The results of this research contribute to enhancing the candidate evalu-
ation process through adaptive weighting and intelligent optimization. By
combining TOPSIS with metaheuristic approach, the proposed approach
ensures higher accuracy and reliability of assessment, supporting the de-
velopment of advanced decision-support systems applicable in both civilian
and military contexts, where safe and precise vehicle operation is of critical
importance.
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Problem settings and data representation
The experimental data used in this research originate from a dataset

collected through the Vienna Test System (VTS), developed by Schuhfried
GmbH. The VTS is a computer-based psychodiagnostic platform designed
for standardized assessment of cognitive, psychomotor and perceptual
abilities relevant to driving performance. It has been widely implemented
in transport, aviation and occupational psychology for the selection and
training of drivers and operators in safety-critical environments (Kubinger,
2007; Kaça et al., 2021; Tinella et al., 2021; Masoudi et al., 2022).

In the present study, the VTS was used to evaluate a sample of 583 can-
didates prior to practical driving examination. Each candidate completed
a battery of tests measuring various psychological and motor skills associ-
ated with safe vehicle control, such as sustained attention, selective reac-
tion, motor coordination, visual search and decision-making under stress.
Table 1 summarizes the main VTS modules used for this study, covering
cognitive, psychomotor, and emotional dimensions of performance.

The raw scores obtained from individual tests were normalized to a com-
mon scale and aggregated into a matrix X ∈ Rn×m, where n represents
the number of candidates and m the number of considered criteria. Each
row of X corresponds to a candidate, and each column to a specific ability
index (e.g., reaction time or spatial orientation). For the purpose of eval-
uation, the target variable y is binary and indicated the final outcome of
the driving test (1 – passed, 0 – failed). This setting naturally leads to a
multi-criteria classification problem, where the goal is to combine multiple
VTS-based criteria into a single composite index of driving ability.

The dataset consisted of percentile scores obtained from the VTS, cov-
ering multiple psychometric and cognitive performance criteria for each
candidate. All records were complete, with no missing values or invalid
entries.

Since VTS tests are expressed in percentiles that differ in scale and
dispersion, a z-score normalization was applied to each criterion to en-
sure comparability and to eliminate potential scale effects in subsequent
analysis. This transformation preserved the relative differences between
candidates while standardizing all variables to have zero mean and unit
variance.

All variables were benefit-type attributes (oriented so that higher values
represented better performance), ensuring consistent interpretation across
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the criteria. The resulting standardized dataset served as an input for eval-
uation, enabling objective aggregation of psychometric indicators into a sin-
gle performance score for each candidate.

Table 1 – Classification of criteria in the Vienna Test System
Group Criterion Description
COG COG Recognition of visual patterns.
DT DT Reaction speed to various stimuli (psychomotor + attention).

PP-R VF Perception of objects in the peripheral visual field (visual per-
ception).

TD Precision of positionmaintenance and tracking (psychomotor
control).

RT RS Speed of motor response (psychomotor ability).
MS Motor execution speed (psychomotor ability).

ATAVT ATAVT Fast recognition of traffic scenes (visual perception).

IVPE

MST Speed in performing motor tasks (psychomotor speed).
RSB Reaction time measured via key press (psychomotor speed).
SC Sustained attention and selective reaction to stimuli (atten-

tion + concentration).
RA Tendency towards risk-taking behavior (cognitive–

psychological assessment).
RR RR Verbal fluency and attention (attention / verbal fluency).

VIP
SP Spatial perception and orientation (cognitive ability).
VIP Processing and interpretation of visual information (cognitive

ability).
AI Solving logical and abstract reasoning tasks (cognitive abil-

ity).
ED ED Decision-making in emotionally challenging situations (emo-

tional and psychological assessment).

TOPSIS with learnable weights
TOPSIS was employed as an MCDM method. The underlying principle

of TOPSIS assumes that the best alternative should have the shortest dis-
tance from the positive ideal solution (PIS) and the farthest distance from
the negative ideal solution (NIS).

In this study, each candidate represents an alternative Ai, while the
m = 16 criteria derived from the VTS represent quantitative indicators of
cognitive and psychomotor performance relevant to driving ability. The de-
cision matrix is defined as:
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X = [xij ]n×m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

where xij denotes the observed value of criterion Cj for candidate Ai.
Unlike the classical TOPSIS, where weights are predefined or expert-

assigned, in learnable weights approach, the weights are optimized using
multiple strategies.

This enables the model to learn the most informative weighting config-
uration directly from the data. The resulting weighted normalized matrix,
obtained after applying z-score standardization to all criteria, is used to
compute the distances to PIS and NIS, yielding a ranking of all candidates.
However, unlike traditional MCDM applications, the availability of ground-
truth exam outcomes (pass/fail) allows TOPSIS to be evaluated in a classi-
fication setting. By comparing the computed preference scores with actual
outcomes, we assess how well each weighting strategy discriminates be-
tween successful and unsuccessful candidates, using the AUC and the
F1-score as performance metrics.

In this study, we focus on the metaheuristic approach of learnable
weights within the TOPSIS framework, employing GA, ACO and ABC to
discover the most discriminative weighting configurations. Other weighting
strategies, including random initialization, regression-based optimization,
and fixed (equal-weight) baseline, have been previously examined (Vujadi-
nović et al., 2025).
The pseudocode of the TOPSIS for ranking and optional classification used
in this study is given below.
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Algorithm 1: TOPSIS for ranking and classification
Input: Criteria matrix X, weight vector w
Output: Ranking of alternatives, success prediction

1 Normalize the criteria matrix X;
2 Apply weights w to the criteria;
3 Determine PIS and NIS;
4 for each alternative do
5 Compute the distance to PIS and NIS;
6 Compute the TOPSIS score as the relative closeness to PIS;
7 end
8 Rank the alternatives according to their scores;
9 Determine the classification threshold τ on validation data;

10 for each alternative do
11 if TOPSIS score ≥ τ then
12 classify as successful;
13 end
14 else
15 classify as unsuccessful;
16 end
17 end

Validation procedure
To ensure robustness of the learned weights and tomitigate overfitting to

a specific data split, a k-fold cross-validation scheme was employed during
optimization. The dataset was partitioned into k = 5 disjoint folds, with four
folds used for training and one for validation in each iteration.

Each metaheuristic algorithm (GA, ACO, ABC) optimized the weight
vector w by maximizing the selected objective function (the AUC or the F1-
score) averaged across all folds. The mean validation performance was
used as the fitness value guiding the search process.

This procedure ensured that the resulting weights generalize well and
that the optimization process reflects the model’s stability across different
data partitions.
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Objective functions
A crucial component of the metaheuristic-based approach process is

the objective function, which quantifies the quality of each candidate weight
vector w during the search. In this study, two alternative objective functions
were implemented and the model performance was compared. Each of-
fers a different perspective on model performance — the AUC emphasizes
discriminative ability, whereas the F1-score focuses on balanced classifi-
cation.
AUC as an optimization objective function.

The AUC is a threshold-independent measure of model separability,
quantifying how well the continuous TOPSIS scores Ci(w) distinguish be-
tween successful and unsuccessful candidates (Hanley & McNeil, 1982;
Fawcett, 2006). Mathematically, it can be expressed as:

AUC = P (C+ > C−),

representing the probability that a randomly chosen successful candidate
(C+) has a higher score than a randomly chosen unsuccessful one (C−).
By maximizing the AUC, the optimization process improves overall discrim-
inative power, independent of any specific classification threshold.

F1-score as an optimization objective function.
The F1-score is defined as the harmonic mean of precision and recall,

fundamental measures in binary classification problems (Powers, 2011;
Sokolova & Lapalme, 2009). Given the confusion matrix components:

• True Positives (TP): correctly predicted successful candidates,
• True Negatives (TN): correctly predicted unsuccessful candidates,
• False Positives (FP): unsuccessful candidates incorrectly predicted as
successful, and

• False Negatives (FN): successful candidates incorrectly predicted as
unsuccessful.

Precision and recall are computed as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.

The F1-score is then:

F1 = 2 · Precision ·Recall

Precision+Recall
,
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ranging from 0 (worst) to 1 (best). By maximizing F1, the model seeks to
balance false positives and false negatives simultaneously.

When the F1-score is used as the objective function, the metaheuris-
tic algorithm searches for a weight vector that maximizes the average
F1-score across validation folds and returns the best solution found dur-
ing the optimization process. The classification threshold is determined
from the Receiver Operating Characteristic (ROC) curve, which represents
the trade-off between the True Positive Rate and the False Positive Rate
across all possible thresholds. The optimal threshold is selected using
Youden’s J statistic (Youden, 1950), ensuring the best possible separation
between successful and unsuccessful candidates.

AUC-based optimization prioritizes global separability of candidate
scores, enabling flexible thresholding for advisory decision-making. F1-
score based optimization emphasizes balanced classification performance,
minimizing both false approvals and rejections. In this study, both objec-
tive functions were applied independently to each metaheuristic (GA, ACO,
ABC), yielding complementary insights into model behavior and stability of
learned weights.

Each metaheuristic evaluates candidate weight vectors w(k) assigning
them the corresponding fitness values. For each vector:

1. Compute TOPSIS scores Ci(w
(k)).

2. Evaluate the selected objective function (the AUC or the F1-score)
on a validation subset.

3. Use the computed metric as the fitness value guiding the search
(e.g., selection probability in GA, pheromone deposition in ACO, re-
cruitment probability in ABC).

Optimization continues until convergence or exhaustion of the evalua-
tion budget, with the best-performing weight vector w∗ selected for testing
on unseen data.

AUC optimized models enhance candidate ranking capability, useful in
advisory systems where thresholds may be defined post-hoc. Models op-
timized for the F1-score reduce both false approvals and rejections, sup-
porting operational decision-making in driver selection.

Metaheuristic
Metaheuristic algorithms represent a broad class of stochastic optimiza-

tion methods, some of which are inspired by natural processes such as
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evolution and swarm behavior. They are particularly effective in solving
complex, nonlinear and multimodal optimization problems where analyti-
cal gradients are unavailable or the search space is discontinuous (Talbi,
2009).

In this study, metaheuristics are used to optimize the TOPSIS weight
vector

w = (w1, w2, . . . , wm),

subject to the constraints:

wj ≥ 0,

m∑
j=1

wj = 1.

Each algorithm iteratively explores the search space, evaluates candi-
date weight vectors using the selected objective function (the AUC or the
F1-score), and gradually improves them through stochastic operators such
as recombination, mutation, and pheromone reinforcement. To ensure a
fair comparison, all algorithms were configured with the same computa-
tional budget (number of fitness evaluations) and identical stopping criteria.

In this research, three metaheuristic algorithms (GA, ACO and ABC)
were used and each of them was adapted to problems characteristics.

Genetic Algorithm (GA)
GA is a population-based stochastic optimization method inspired by

biological evolution and Darwinian natural selection.
GA begins with a randomly generated population of weight vectors.

Each vector is evaluated using a fitness function f(w), corresponding to
the chosen objective function (AUC or F1-score):

f(w) =

{
AUC(w), if AUC is the optimization objective function,
F1(w), if F1-score is the optimization objective function.

The evolutionary process consists of iterative application of three GA
operators, together with fitness evaluation and a population replacement
step:

• Selection – parent selection is performed using deterministic elitist
rank selection, where the individuals are sorted according to their fit-
ness values (rank-based elitist selection).
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• Crossover – offsprings are generated using single-point crossover.
For each offspring, a random crossover point is selected and the first
segment of the weight vector is inherited from one parent, while the
remaining segment is inherited from the other parent.

• Mutation – for each individual, a fixed percentage of genes is randomly
selected and perturbed by adding Gaussian noise. For a selected
gene j, the mutated value is given by

wnew
j = wj + ϵj , ϵj ∼ N (0, σ2).

where σ = 0.1. After mutation, all weights are clipped to the interval
[0, 1] and the entire weight vector is normalized to satisfy

m∑
j=1

wnew
j = 1.

Through repeated application of selection, crossover and mutation, the
population gradually evolves towards better solutions. The algorithm termi-
nates after a predefined maximum number of generations is reached. The
final output is the best weight vector found during the optimization process
according to the fitness function.

The pseudocode of the GA implementation used in this study is given be-
low.
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Algorithm 2: Genetic Algorithm for optimizing TOPSIS weights
Input: Criteria matrix X, ground truth labels y, GA parameters

(max_generations, population size, number of parents,
mutation rate)

Output: Best found vector w
1 Initialize population of random weight vectors
2 for generation = 1 to max_generations do
3 Evaluate fitness function of each individual using TOPSIS +

metric (AUC/F1-score)
4 Select the best individuals (elitism + selection)
5 Generate offspring using crossover
6 Apply mutation to offspring
7 Form new population from parents and offspring
8 end
9 return best found vector w

Ant Colony Optimization (ACO)
ACO is a population-based metaheuristic inspired by the collective

foraging behavior of ants, where solution quality is reinforced through
pheromone-mediated learning. In the considered formulation, ACO is
adapted to a continuous optimization setting in order to determine optimal
weight vectors for the TOPSIS method.

In each iteration, a population of nants ants constructs candidate solu-
tions represented as a continuous weight vector.

The pheromone trail τj represents the learned importance of the crite-
rion j and is initialized uniformly with a small random perturbation in order
to avoid symmetry and premature bias:

τ
(0)
j = 1 + ϵj , ϵj ∼ U(0, 0.01).

Candidate solutions are constructed by combining pheromone-driven
exploitation with stochastic exploration of the continuous search space.
Specifically, each ant generates a weight vector according to

w = α
τ∑
j τj

+ β
r∑
j rj

, r ∼ U(0, 1)m,
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followed by an L1 normalization step, thereby ensuring feasibility of the
constructed solution. Here, τ denotes the pheromone vector, while r is a
random vector introducing exploration. The parameters α ≥ 0 and β ≥ 0

control the balance between pheromone-based exploitation and random
exploration. These parameters are kept constant within each ACO run,
but are varied across experiments using a predefined parameter grid, with
α ∈ {0.8, 1.0} and β ∈ {0.1, 0.2}.

Each constructed solution is evaluated using a fitness function

f(w) ∈ {AUC(w), F1(w)},

obtained from the TOPSIS-based classifier.
The algorithm employs an offline pheromone update mechanism. Af-

ter all ants construct and evaluate their solutions in a given iteration,
pheromone levels are updated in two steps. First, evaporation is applied:

τ ← (1− ρ)τ ,

where ρ ∈ (0, 1) denotes the pheromone evaporation rate. Subsequently,
pheromone is reinforced using only a subset of elite solutions from the cur-
rent iteration. Let E denote the set of top-performing ants, defined as a
fixed fraction of the population. The pheromone update is then given by

τ ← τ + ρ
∑
i∈E

f(w(i))w(i),

where f(w(i)) denotes the fitness value of the solution w(i) generated in the
current iteration.

The algorithm maintains the best found solution across all iterations for
reporting purposes. The optimization process is repeated for a fixed num-
ber of iterations niter, which serves as the stopping criterion.

The pseudocode of the ACO implementation used in this study is given
below.
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Algorithm 3: Ant Colony Optimization for optimizing TOPSIS
weights
Input: Criteria matrix X, ground truth labels y, ACO parameters

(number_of_ants, max_iterations, α, β, ρ)
Output: Best found vector w

1 Initialize pheromone vector τ for all criteria (small random
perturbation)

2 Initialize best found solution w∗ and best score
3 for iteration = 1 to max_iterations do
4 for each ant i = 1, . . . , number_of_ants do
5 Draw random vector r ∼ U(0, 1)m and normalize it
6 Construct solution w(i)

7 Evaluate fitness f(w(i)) using TOPSIS + metric (AUC/F1)
8 Update (w∗, f∗) if f(w(i)) > f∗

9 end
10 Evaporate pheromone
11 Select elite set E (top nelite ants in the current iteration)
12 Offline pheromone update using elite solutions
13 end
14 return best found vector w

Artificial Bee Colony (ABC)
ABC is a swarm intelligence metaheuristic inspired by the collective for-

aging behavior of honey bees. The algorithm simulates how bees search
for food sources, communicate solution quality, and recruit other bees to
promising areas. In ABC, each bee represents a candidate solution en-
coded as a continuous weight vector.

Each iteration of ABC consists of two complementary phases:
1. Exploration (scout phase): scout bees randomly generate new solu-

tions to explore unexplored regions of the search space,
2. Exploitation (recruitment phase): non-scout bees follow the best so-

lutions found so far and refine them through local search.
The recruitment probability of the bee i is defined as:

Pi =
f(wi)∑N
k=1 f(wk)

,
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where f(wi) ∈ {AUC(w), F1(w)} denotes the fitness of the weight vec-
tor generated by the bee i. Better solutions attract more bees, increasing
exploitation pressure on high-quality areas of the search space.

During local exploitation, the weight vector is refined using a stochastic
update followed by normalization:

wj =
wj + ϵ∑m

k=1(wk + ϵ)
, ϵ ∼ N (0, σ2).

The pseudocode of the ABC implementation used in this study is given
below.

Algorithm 4: Artificial Bee Colony for optimizing TOPSIS weights
Input: Criteria matrix X, ground truth labels y, ABC parameters

(number of bees, max_iterations, ρ, e_frac, sco_str)
Output: Best found vector w

1 Initialize population of bees with random candidate solutions
2 for iteration = 1 to max_iterations do
3 Evaluate fitness of all bees using TOPSIS + metric

(AUC/F1-score)
4 Select elite bees with best solutions
5 Redirect non-elite bees towards elite solutions (exploitation)
6 Scout bees explore new random solutions (exploration)
7 end
8 return best found vector w

Results
Experiments were conducted on a dataset consisting of 583 candidates

evaluated through VTS tests which includes 16 evaluation criteria (Table 1)
and the binary outcome representing pass or fail on the driving exam. All
algorithms were implemented in Python and evaluated using 5-fold cross-
validation. Each algorithm was executed five times, and the average re-
sults were recorded. The performance metrics included Accuracy, the AUC
and the F1-score as well as time (s) which represents the internal fitness
evaluation time. Precision and Recall were also calculated, although not
shown in the tables, since they are required for computing the F1-score.
Additionally, execution time and algorithmic complexity were recorded for
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each optimization approach. The experiments were performed on a stan-
dard workstation equipped with an AMD Ryzen 3 processor, 4 GB of RAM,
and running Windows 10.

The results of GA metaheuristic
When the optimization objective function is the AUC, GA achieved con-

sistent and interpretable performance across the tested parameter settings.
The best results were observed for the configuration of 20 generations
(n_gens), 10 individuals (n_pop), 10 parents (n_par), where GA reached
an AUC of 0.7234 and an accuracy of 0.6585–0.7271. Increasing the
generations number from 10 to 20, the accuracy was improved, indicating
that a longer evolutionary process allowed better exploration of the search
space and refinement of promising solutions. A mutation rate between 5%
and 10% (mut (%)) had a minimal impact on the final AUC, confirming that
the algorithm evolved in a stable manner and was not overly sensitive to
stochastic variations.

In some configurations, overall accuracy increased while the AUC
slightly decreased. This indicates that although the model correctly classi-
fied a higher proportion of samples, its ability to consistently rank positive
versus negative cases was slightly reduced. Such behavior reflects the
inherent difference between the accuracy and the AUC as evaluation met-
rics.

Table 2 – Best 5 GA results for objective functions AUC and F1-score
Obj n_gens n_pop n_par mut (%) Accuracy AUC/F1 time (s)
AUC 20 10 10 5 0.6585 0.7234 1.79
AUC 20 10 10 10 0.6585 0.7234 1.96
AUC 20 20 10 5 0.7271 0.7233 3.82
AUC 20 20 10 10 0.7271 0.7233 3.66
AUC 30 20 10 5 0.7308 0.7227 5.78
F1 30 10 5 5 0.7737 0.8468 2.82
F1 30 10 5 10 0.7737 0.8468 2.84
F1 20 10 5 5 0.7326 0.8039 1.94
F1 20 10 5 10 0.7326 0.8039 1.91
F1 20 20 10 5 0.7017 0.7765 3.76

When the optimization objective function was shifted to the F1-score, the
GA adapted its search behavior accordingly. The top-performing configu-
ration 30 generations, 10 individuals, 5 parents, 5% mutation achieved an

1211

Sa
rić
,I
.e
ta
l.,

M
et
ah
eu
ris
tic
-b
as
ed

ap
pr
oa
ch

to
op
tim

iz
in
g
th
e
w
ei
gh
ts
in
th
e
TO

PS
IS

m
et
ho
d
fo
rd

riv
er

ca
nd
id
at
e
pe
rfo

rm
an
ce

as
se
ss
m
en
t,
pp
.1
19
6–
12
21



F1-score of 0.8468 with an accuracy of 0.7737. Unlike the AUC-based
runs, no trade-off between accuracy and the F1-score was observed in
this case. Other configurations with slightly different mutation rates (5–
10%) yielded identical performance, reflecting stable convergence behav-
ior. Overall, GA demonstrated high robustness and adaptability to different
objective function formulations, maintaining solid performance and minimal
sensitivity to parameter tuning.

Table 2 presents the five best-performing results for both objective func-
tions, the AUC and the F1-score.

The results of ACO metaheuristic
When optimized for the AUC-based fitness function, the ACO algo-

rithm demonstrated consistent convergence and solid discriminative per-
formance. The best configuration was achieved with α = 1.0, β = 0.1,
ρ = 0.2 and a colony size of 20 ants (n_ants) and 50 iterations (n_iter).
This setup resulted in an AUC of 0.7528 with an accuracy of 0.7479. The
relatively high heuristic importance (β) guided ants towardsmore promising
regions in the search space, while a moderate pheromone evaporation rate
(ρ) maintained useful historical information without premature stagnation.
The algorithm achieved a strong balance between exploration and exploita-
tion, as evidenced by a stable convergence curve and low variance across
folds. Overall, ACO optimized for the AUC favored global ranking consis-
tency and maintained well-balanced classification metrics across classes.

Table 3 – Best 5 ACO results for objective functions AUC and F1-score
Obj n_ants n_iter ρ α β Accuracy AUC/F1 time (s)
AUC 20 50 0.2 1.0 0.1 0.7479 0.7528 9.39
AUC 40 50 0.1 0.8 0.1 0.7393 0.7527 17.94
AUC 20 50 0.2 0.8 0.1 0.7565 0.7525 9.12
AUC 20 50 0.1 1.0 0.2 0.7065 0.7519 9.19
AUC 40 100 0.1 1.0 0.1 0.7530 0.7519 35.87
F1 20 100 0.1 1.0 0.2 0.7134 0.7780 18.02
F1 40 100 0.1 0.8 0.1 0.7168 0.7699 36.48
F1 40 50 0.2 1.0 0.2 0.7098 0.7640 18.17
F1 20 50 0.2 0.8 0.1 0.7081 0.7640 9.35
F1 20 100 0.2 0.8 0.2 0.7064 0.7638 18.24

When the F1-score is used as the objective function, ACO shifts its
search towards solutions that prioritize the correct identification of suc-
cessful candidates. This leads to a higher F1-score of 0.7780 obtained
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at α = 1.0, β = 0.2, ρ = 0.1, 20 ants and 100 iterations but with a notice-
ably lower accuracy of 0.7134. This indicates that F1-based optimization
pushes ACO to favor sensitivity towards the majority class, even at the
cost of overall classification balance. Compared to AUC optimization, the
F1-score optimized configurations show greater variability, meaning the
search space is less smooth and more sensitive to hyperparameter set-
tings.

The five best results obtained using the AUC and the F1-score as ob-
jective functions are shown in Table 3.

The results of ABC metaheuristic
In the AUC-optimized mode, the ABC algorithm achieved its best per-

formance with a population of 20 bees (n_bees), 50 iterations (n_iter), an
evaporation rate of ρ = 0.2, elite fraction of 0.2 (e_frac), and scout strength
(sco_str) of 0.05. This configuration produced an AUC of 0.7455 with an
accuracy of 0.7598. The balance between exploration and exploitation
was effectively maintained through moderate elitism and controlled scout
activity, enabling the algorithm to refine high-quality solutions without ex-
cessive random wandering. The strong AUC performance indicates that
ABC successfully ranked candidates in alignment with the target classi-
fication boundaries. Stability across multiple runs confirms that these pa-
rameter values provide a robust trade-off between convergence speed and
solution quality.

Table 4 – Best 5 ABC results for objective functions AUC and F1-score
Obj n_bees n_iter ρ e_frac sco_str Accuracy AUC/F1 time (s)
AUC 20 50 0.2 0.2 0.05 0.7598 0.7455 8.99
AUC 20 100 0.1 0.2 0.1 0.7271 0.7453 18.52
AUC 40 50 0.2 0.2 0.05 0.7340 0.7445 18.43
AUC 40 100 0.2 0.2 0.1 0.7340 0.7445 36.29
AUC 20 100 0.2 0.1 0.05 0.7597 0.7445 18.41
F1 20 50 0.1 0.1 0.1 0.7598 0.8346 8.99
F1 20 50 0.1 0.2 0.1 0.7547 0.8316 9.01
F1 40 50 0.2 0.1 0.1 0.7410 0.8149 18.14
F1 20 50 0.1 0.1 0.05 0.7204 0.7861 9.09
F1 20 50 0.2 0.1 0.1 0.7102 0.7854 9.20

When optimizing for the F1-score, ABC exhibited more aggressive
exploitation behavior, focusing on reducing false negatives. The best-
performing setup used 20 bees, 50 iterations, an evaporation rate of ρ =
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0.1, elite fraction of 0.1, and scout strength of 0.1, resulting in an F1-score
of 0.8346with an accuracy of 0.7598. Compared to the AUC-oriented ver-
sion, this configuration converged faster but with higher variability across
runs. The increased scout activity improved the exploration of new candi-
date regions, yet introducedminor instability in fitness progression. Despite
this, the F1-score based optimization was particularly effective in identify-
ing successful candidates, achieving strong class sensitivity performance
and competitive classification accuracy.

Table 4 presents the five best-performing results for both objective func-
tions, the AUC and the F1-score.

Comparison between the AUC and F1-score objective func-
tions
A direct comparison between the two optimization objective functions

reveals that the AUC-based optimization yields more stable and generaliz-
able models, while the F1-score based optimization prioritizes performance
on the dominant class. The difference in overall accuracy was minor, yet
the class-wise behavior diverged significantly: The AUC optimization main-
tained better overall class balance, whereas the F1-score optimization im-
proved detection of successful candidates but at the cost of false negatives.
This highlights the importance of selecting an appropriate objective function
according to the intended application—whether balanced discrimination or
maximal recognition of a specific class is desired.

When the AUC is used as the optimization objective function, all three
metaheuristic algorithms (GA, ACO, ABC) tend to converge towards weight
vectors that improve the global discriminative power of the TOPSIS model.
In this setting, the algorithms search for solutions that maximize the sepa-
ration between successful and unsuccessful candidates across the entire
scoring scale, rather than focusing on the performance of a specific class.
As a result, the AUC-based optimization produces more balanced and sta-
ble models, with relatively low variability between executions and smoother
convergence. This behavior is particularly suited for ranking problems,
where the goal is to ensure that higher-ranked candidates are consistently
better than lower-ranked ones according to all criteria.

In contrast, when the objective function is the F1-score, the optimiza-
tion becomes strongly oriented towards correct identification of the pos-
itive class, i.e., candidates who successfully pass the driving exam. The
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search focuses on solutions that increase sensitivity and improve detection
of successful candidates, even if this leads to slightly lower overall ranking
precision or weaker class separation. In this mode, the metaheuristic tends
to emphasize exploitation of the search space, producing higher F1-score
values but also greater variability across parameter configurations. This
makes F1-score optimized solutions particularly suitable when false neg-
atives (misclassifying successful candidates as unsuccessful) are consid-
ered more costly than false positives.

In summary, the AUC-oriented optimization yields stable, globally dis-
criminative models suitable for ranking, whereas the F1-oriented optimiza-
tion yields sensitive, class-focused models suitable for decision-making
and risk detection. The choice of the objective function should therefore
follow the practical requirements of the evaluation system: whether the
goal is to build an accurate ranking of candidates or to minimize the risk of
approving an unfit driver.

Time-budget comparison of metaheuristic-based weight op-
timization methods
To enable a fair comparison between metaheuristics with different con-

vergence speeds, all algorithms are evaluated under the same fixed time
budget of 300 seconds, using their previously optimized parameter set-
tings.

Table 5 summarizes the best-found results obtained by GA, ACO, and
ABC under a fixed time budget. The reported best-target value represents
the best average cross-validation performance obtained within the allotted
time budget.

Table 5 – Best-found performance of GA, ACO, and ABC under a fixed time
budget

Variant Target Best target Precision Recall F1 AUC
GA AUC 0.748 0.896 0.661 0.758 0.748
ACO AUC 0.765 0.898 0.740 0.802 0.765
BCO AUC 0.761 0.903 0.746 0.805 0.761
GA F1 0.837 0.853 0.828 0.837 0.692
ACO F1 0.807 0.900 0.740 0.807 0.743
BCO F1 0.800 0.878 0.747 0.800 0.713

Under these conditions, the evaluated metaheuristics exhibit distinct
and complementary strengths depending on the optimization objective
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function. When the AUC is used as the objective function, ACO and ABC
consistently achieve higher best-found AUC values than GA, indicating a
stronger ability to optimize the global ranking of candidates across the en-
tire score distribution. This behavior can be attributed to pheromone-based
information sharing, which promotes collective exploration of promising
regions and leads to smoother and more stable ranking structures. In
contrast, when the F1-score is directly optimized, GA attains the highest
F1-score values, reflecting its effectiveness in fine-grained adjustment of
weight configurations that balance precision and recall at a specific deci-
sion threshold. The evolutionary operators of GA, particularly mutation and
elitist selection, enable more aggressive local refinements that are benefi-
cial for threshold-dependent metrics. As a result, improvements in the F1-
score are achieved even when global ranking quality, as measured by the
AUC, is not maximized. These findings confirm that no single metaheuristic
dominates across objective functions and emphasize that the selection of
the optimization algorithm should be aligned with the intended evaluation
criterion and decision-making requirements.

Computational complexity
The computational cost of the proposed approach consists of two parts:

(1) evaluation of the TOPSIS method for a given weight vector, and (2)
iterative optimization performed by a metaheuristic algorithm (GA, ACO or
ABC).

For a decision matrixX ∈ Rn×m containing n candidates andm criteria,
one evaluation of TOPSIS requires: normalization of the matrix, weight-
ing of the criteria, computing distances to PIS and NIS and calculating the
closeness coefficient. This results in a computational complexity of:

O(nm+ n log n),

where the first term corresponds to matrix operations and the second term
to sorting performed during evaluation of performance metrics.

Each metaheuristic performs a number of TOPSIS evaluations. If E
denotes the number of candidate solutions generated during optimization,
then the total complexity of the optimization process is:

O(E · (nm+ n log n)).
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Since E depends only on the algorithm parameters (population size,
number of generations/iterations) and not on the data itself, the complexity
grows linearly with the number of fitness evaluations. Therefore, all three
algorithms (GA, ACO, ABC) exhibit the same asymptotic behavior, differing
only in the value of E.

In practice, the execution time is dominated by the number of fitness
evaluations, since each evaluation requires running TOPSIS and comput-
ing classification metrics. Because TOPSIS operates on relatively small
matrices (a fixed number of criteria), the metaheuristic approach remains
computationally efficient and can be executed on a standard workstation
without parallelization.

Although all three metaheuristic algorithms operate under the same
asymptotic computational complexity, their execution time differs in prac-
tice due to the way each algorithm generates and evaluates candidate so-
lutions.

GA maintains a fixed-size population and produces a limited number of
new solutions per generation through crossover and mutation operators.
Consequently, the number of fitness evaluations E grows proportionally
to the number of generations and the population size. Since GA typically
converges quickly towards promising regions of the search space, fewer
candidate weights are evaluated overall.

In contrast, ACO and ABC are based on swarm-search mechanisms,
where a significantly larger number of solutions is generated during each
iteration. In ACO, every ant probabilistically constructs a new solution using
pheromone trails, which results in many more candidate weight vectors
evaluated in each step. Similarly, in ABC, both recruited bees and scout
bees explore the search space simultaneously, leading to multiple parallel
solution updates per iteration.

Because each newly generated solution requires a complete execution
of TOPSIS, followed by evaluation of classification metrics (the F1-score or
the AUC), the total execution time increases proportionally to the number
of solutions explored. Therefore, ACO and ABC require more computa-
tional time than GA, not because their per-iteration complexity is higher, but
because they evaluate a substantially larger number of candidate weight
vectors during the optimization process.
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Conclusion
This paper presented a metaheuristic-based optimization framework for

improving the weight determination process in the TOPSIS method when
evaluating the performance of driver candidates based on psychomotor
and cognitive abilities measured by the VTS. Unlike traditional TOPSIS
implementations that rely on fixed or subjectively assigned weights, the
proposed approach automatically learns the optimal weight configuration
by using three population-based optimization algorithms: GA, ACO, and
ABC.

Two optimization objective functions were analyzed — the AUC and
the F1-score. The AUC encouraged the algorithm to improve the overall
separability of candidates, resulting in stable and balanced ranking per-
formance. In contrast, the F1-score optimization directed the search to-
wards maximizing correct identification of successful candidates, empha-
sizing sensitivity of the classification process. This makes the F1-score an
objective function particularly suitable when the decision system prioritizes
reducing classification errors in determining whether a candidate is ready
to proceed to practical driving examination.

Among the evaluated metaheuristics, ACO achieved the highest mean
AUC value, indicating superior capability in separating successful from un-
successful candidates, whereas ABC reached the highest mean F1-score.
GA demonstrated competitive performance with a significantly lower com-
putational cost, making it suitable for applications with limited execution
time.

The findings confirm that introducing the metaheuristic approach into
TOPSIS substantially improves decision accuracy and removes the need
for subjective weight assignment. This contributes to the development of
data-driven, objective function, and scalable evaluation tools for candidate
assessment in transportation safety domains. Future research may extend
this work by incorporating additional machine learning models, testing hy-
brid optimization strategies, or validating the approach on larger datasets
and real-world licensing processes.
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Сажетак:
Увод/циљ: Безбедност у саобраћају и поуздана селекција
возача представљају важан сегмент савременог друштва.
Циљ овог рада је унапређење поступка процене успешно-
сти кандидата на возачком испиту применом вишекрите-
ријумских метода одлучивања и метахеуристичке опти-
мизације. На основу резултата добијених тестом Vien-
na Test System, предложена је примена методе TOPSIS са
адаптивним одређивањем тежина критеријума.
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Методе: Тежински коефицијенти методе TOPSIS опти-
мизовани су помоћу три метахеуристичка алгоритма –
генетског алгоритма (GA), алгоритма мрављих колонија
(ACO) и алгоритма пчелињих колонија (ABC). Током опти-
мизације коришћене су две различите функције циља: AUC
и F1-score, како би се испитало њихово дејство на тачност
и стабилност модела. Експериментални оквир обухвата
три сегмента: (1) поређење перформанси GA, ACO и ABC
метахеуристика за AUC функцију циља, (2) аналогно по-
ређење за F1-score функцију циља и (3) међусобну анализу
AUC и F1-score оптимизованих модела.
Резултати: Указано је да избор метахеуристичког алго-
ритма и функције циља знатно утичу на перформансе ме-
тоде TOPSIS. Оптимизација са AUC функцијом циља дове-
ла је до стабилнијих модела и бољег баланса између успе-
шних и неуспешних кандидата, док је оптимизација са F1-
score функцијом циља постигла већу осетљивост и бољу
идентификацију успешних кандидата.
Закључак: Увођење метахеуристичких алгоритама у оп-
тимизацију тежина методе TOPSIS омогућава адаптив-
но и поузданије рангирање кандидата, чиме се доприноси
развоју интелигентних система за селекцију возача и уна-
пређењу безбедности у саобраћају. Добијени резултати
потврђују да се правилним избором функције циља и ал-
горитма оптимизације мсже постићи знатно побољшање
тачности модела.

Кључне речи: TOPSIS, метахеуристике, GA, ACO, ABC, F1-
score, AUC, Vienna Test System, вишекритеријумско одлучи-
вање.
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