
15

Originalni naučni rad UDK: 161.111:004.032.26:551.509.313.6
 BIBLID:0350-8528(2024),24.p.15-36
 doi:10.5937/zeint34-51258

A Comparative Analysis of Deep Neural

Networks and Gradient Boosting Algorithms in

Long-Term Wind Power Forecasting

Luka Ivanović1 , Saša D. Milić1 , Živko Sokolović1 ,
Aleksandar Rakić2

1
University of Belgrade, Electrical Engineering Institute Nikola Tesla, Koste

Glavinića 8a, 11000 Belgrade, Serbia

2
University of Belgrade, School of Electrical Engineering, Bulevar kralja

Aleksandra 73, 11000 Belgrade, Serbia

luka.ivanovic@ieent.org, s-milic@ieent.org, zivko.sokolovic@ieent.org,
rakic@etf.bg.ac.rs

Abstract: A vital step toward a sustainable future is the power grid's
incorporation of renewable energy sources. Wind energy is significant
because of its broad availability and minimal environmental impact. The
paper presents a comparative analysis of recurrent neural network
algorithms and gradient boosting machines applied to time series data for
the regression issue of estimating the active power generated by a wind
farm. Gradient boosting algorithms combine the advantages of a few
machine learning models (decision trees, random forests, etc.) to produce
a powerful prediction model. In addition to conventional recurrent neural
networks, the article deals with long short-term memory and gated
recurrent unit as cutting-edge models for time series analysis and
predictions. A comprehensive analysis was carried out on a large wind
power generation data set.

Keywords: Machine Learning, Recurrent Neural Network, Long
Short−Term Memory, Gated Recurrent Unit, Gradient Boosting Machines,
XGBoost, wind farm, power generation

1. Introduction

Power systems are undergoing a revolution thanks to machine learning,
which makes it possible to accurately estimate load, allocate resources
optimally, and improve grid stability. Machine learning models predict

https://doi.org/10.5937/zeint34-51258
mailto:luka.ivanovic@ieent.org
mailto:zivko.sokolovic@ieent.org
https://orcid.org/0000-0003-4345-4523
https://orcid.org/0000-0001-5757-3430
https://orcid.org/0009-0009-0747-6320
https://orcid.org/0000-0002-3682-1754

16

generation from wind energy sources, making it easier to integrate renewable
energy sources into the grid and increasing integration efficiency.
The wind power forecast comprises four time scales: ultra-short-term, short-
term, medium-term and long-term [1]. An ultra-short-term forecasting is used to
predict power production in the next hours, which is useful for managing the
daily operations of wind farm (WF) units. Short-term forecasting is useful for
making predictions several hours to several days ahead of time, which is
beneficial for wind turbine maintenance and the economy as a whole. The
medium-term forecast is useful for developing quarterly plans for power
generation for grid and wind farm construction, as it provides predictions
several days to several months in advance.
In order to support strategic planning and investment decisions for renewable
energy projects, long-term wind power forecasting involves prediction wind
power generation patterns one to several years into the future. This approach
offers insights into the possible expansion and development of wind power
infrastructure by accounting for long-term climate trends.
The hands-on machine learning models have replaced and improved existing
analyzing and forecasting methods in the power industry in the last few years.
The adequate ML model selection is still a demanding research and
engineering effort. One of the contributions of this paper is the selection method
and practical demonstration of the application of several ML models. In this
research, the authors focus on long-term forecasting with two Recurrent Neural
Network (RNN) models compared to the Extreme Gradient Boosting (XGBoost)
model, which represents an ensemble of the Gradient Boosting Machines
(GBM) models, to assess which is more suitable and reliable for long-term wind
power forecasting. The results will serve as a foundation for future research
and further expansion of knowledge in wind power forecasting.

The paper is organized as follows: Section 2 presents the theoretical framework
for deep neural network algorithms, and Section 3 offers insights into ensemble
algorithms including GBM and XGBoost. Section 4 provides the comparative
results. The discussion, conclusion, and future research are presented in
Section 5.

2. Deep Neural Networks (DNN)

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL)
are often used terms to describe intelligent systems or software. Figure 1 shows
the current state of DL in relation to ML and AI. According to Figure 1, DL is
both of subset of ML and a component of the larger field of AI. In general, AI
involves imbuing machines or systems with human behavior and intelligence,
whereas ML involves learning from data or experiences and automating the
development of analytical models. DL involves extracting information from data
using multi-layer neural networks, with “deep” referring to the several levels
through which data is processed to create a data-driven model [2].

17

Thus, DL can be considered as a core technique within AI, representing an
edge in artificial intelligence that enables the development of intelligent systems
and automation. Importantly, DL improves AI to a new level, often known as
“Smarter AI”, and DL approaches play an important role in advanced analytics
and intelligent decision-making. Overall, DL algorithms have the ability to
significantly change the modern world, particularly in terms of providing a strong
computational engine and contributing to technology-driven automation, smart
systems, and intelligent decision-making in line with the goals.

Figure 1. A comparison of Deep Learning with Machine Learning and Artificial

Intelligence

A typical DNN contains multiple hidden layers including input and output
layers. Figure 2 shows a general structure of a DNN (hidden layer = N, N ≥ 2)
comparing with a shallow network (hidden layer = 1).

Figure 2. A general architecture of a shallow network with one hidden layer and a deep

neural network with multiple hidden layers

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are deep learning models that capture
sequential dynamics through feedback connections, similar to cycles within a
network of nodes. While this approach may appear contradictory at first, the

18

precise description of recurrent edges eliminates ambiguity, unlike in
Feedforward Neural Networks (FNNs), where computation order is
unambiguous. RNNs are unrolled over time steps, with consistent parameters
applied at each step, synchronously propagating standard connections to
succeeding layers and dynamically transferring information across adjacent
time steps by recurrent connections. RNNs, shown as an unfolded perspective
in Fig. 3, can be thought of as feedforward neural networks in which the
parameters of each layer (both standard and recurrent) are shared over time
steps [3].

Figure 3. Unfolded RNN

Each hidden unit in a FNNs receives a single input, which is the input
layer’s net preactivation. In contrast, each hidden unit in a RNN receives two
separate inputs: preactivation from the input layer and activation of the same
hidden layer from the previous time step, t-1. Initially, at time step t=0, the
hidden units are initialized to zeros or small random numbers. At time steps
where t>0, the hidden units receive input from the current data point x(t), as
well as the previous hidden unit values at t-1, denoted as h(t-1).

2.1.1 Computing activations in an RNN

The different weight matrices in a single-layer RNN are as follows (Fig.4):

• Wxh: The weight matrix between the input 𝐱(t) and the hidden layer

h

• Whh: The weight matrix associated with the recurrent edge

• Who: The weight matrix between the hidden layer and output layer

19

Figure 4. Unfolded RNN with associated weight matrices

Activations are computed in a manner similar to typical multilayer

perceptrons and other types of FNNs. For the hidden layer, the net input, 𝐳h

(preactivation), is computed by a linear combination, that is, simply compute
the sum of the multiplications of the weight matrices with the respective vectors
and add the bias unit:

 𝒛ℎ
(𝑡)

= 𝑾𝑥ℎ𝒙(𝑡) + 𝑾ℎℎ𝒉(𝑡−1) + 𝒃ℎ (1)

Then, the activations of the hidden units at the time step, t, are calculated as
follows:

 𝒉(𝑡) = 𝜙ℎ(𝒛ℎ
(𝑡)

) = 𝜙ℎ(𝑾𝑥ℎ𝒙(𝑡) + 𝑾ℎℎ𝒉(𝑡−1) + 𝒃ℎ) (2)

Once the activations of the hidden units at the current time step are computed,
then the activations of the output units will be computed, as follows:

 𝒐(𝑡) = 𝜙𝑜(𝑾ℎ𝑜𝒉(𝑡) + 𝒃𝑜) (3)

2.1.2 Training RNNs using backpropagation through time (BPTT)

Backpropagation in RNNs is known as BPTT [4]. This approach needs us
to expand or unroll an RNN’s computational graph one step at a time. The
unrolled RNN is essentially a FNN with a unique property: the same parameters
appear at each time step. Then, just as in any FNN, the chain rule to
backpropagate gradients across the unrolled network can be used. The
gradient with respect to each parameter must be added across all places where
the parameter appears in the unrolled net. If the parameters were time-variant,
the model could adapt to changing data patterns but would increase in
complexity, making training more difficult and computationally expensive. This
could lead to improved performance in non-stationary processes, though
algorithms like transformers or attention mechanisms may be better suited for
such tasks.

In the following section, we will demonstrate how to compute the gradients
of the objective function with respect to all decomposed model parameters. To

20

simplify, we consider an RNN without bias parameters. The activation function
in the hidden layer employs the identity mapping (𝜙(𝑥) = 𝑥). For time step t,

define the single input and output as 𝒙(𝑡) ∈ ℝ𝑑 and 𝒚(𝑡), respectively. The

hidden state 𝒉(𝑡) ∈ ℝℎ and the output 𝒐(𝑡) ∈ ℝ𝑞 are computed as follows:

 𝒉(𝑡) = 𝑾𝑥ℎ𝒙(𝑡) + 𝑾ℎℎ𝒉(𝑡−1) (4)

 𝒐(𝑡) = 𝑾ℎ𝑜𝒉(𝑡) (5)

where 𝑾𝑥ℎ ∈ ℝℎ×𝑑, 𝑾ℎℎ ∈ ℝℎ×𝑑 and 𝑾ℎ𝑜 ∈ ℝℎ×𝑑 are the weight parameters.

Denote by 𝑙(𝒐(𝑡), 𝒚(𝑡)) the loss at time step t. Our objective function, the loss

over T time steps from the beginning of the sequence is thus:

 𝐿 =
1

𝑇
∑ 𝑙(𝒐(𝑡), 𝒚(𝑡)) 𝑇

𝑡=1 (6)

To visualize the dependencies between model variables and parameters during
RNN computation, we can create a computational graph for the model as
shown in Figure 5:

Figure 5. Computational graph showing dependencies for an RNN model with three
time steps. Boxes represent variables (not shaded) and circles represent operators

The model depicted in Fig.4 involves parameters denoted as Wxh, Whh and Who.
Usually, gradient corresponding to these parameters: 𝝏𝑳/𝝏𝑾𝒙𝒉, 𝝏𝑳/𝝏𝑾𝒉𝒉 and

𝝏𝑳/𝝏𝑾𝒉𝒐 must be computed in order to train this model.

We can compute and store the gradients progressively by navigating in the
opposite direction of the arrows, based on the relationships shown in Fig 3.
First, it is quite simple to differentiate the objective function at any time step t,
with respect to the model output:

𝜕𝐿

𝜕𝒐(𝑡) =
𝜕𝑙(𝒐(𝑡),𝒚(𝑡))

𝑇∙𝜕𝒐(𝑡) ∈ R𝑂 (7)

21

We can now compute the gradient of the objective function with respect to the
parameter Who in the output layer. According to Fig. 3, the objective function L
depends Who through o(1), ..., o(T). Employing the chain rule gives us:

𝜕𝐿

𝜕𝑾ℎ𝑜
= ∑

𝜕𝐿

𝜕𝒐(𝑡) ×
𝜕𝒐(𝑡)

𝜕𝑾ℎ𝑜
= ∑

𝜕𝐿

𝜕𝒐(𝑡) 𝒉(𝑡)𝑇𝑇
𝑡=1

𝑇
𝑡=1 (8)

where 𝛛𝐋/𝛛𝐨(t) is given by (7).

Next, at the final time step T, the objective function L depends on the hidden

state h(T) only via o(T). Therefore, the gradient 𝛛𝐋/𝛛𝐡(t) ∈ ℝℎ is:

∂L

∂𝒉(𝑇) =
𝜕𝐿

𝜕𝒐(𝑇) ×
𝜕𝒐(𝑇)

𝜕𝒉(𝑇) = 𝑾ℎ𝑜
𝑇 𝜕𝐿

𝜕𝒐(𝑇) (9)

The complexity increases for any time step t < T where the objective
function L relies on h(t) through h(t+1) and o(t). By applying the chain rule, the

gradient of the hidden state 𝛛𝐋/𝛛𝐡(t) ∈ ℝℎ at any time step t < T can be
recursively computed as:

∂L

∂𝒉(𝑡) =
𝜕𝐿

𝜕𝒉(𝑡+1) ×
𝜕𝒉(𝑡+1)

𝜕𝒉(𝑇) +
𝜕𝐿

𝜕𝒐(𝑡) ×
𝜕𝒐(𝑡)

𝜕𝒉(𝑡) = 𝑾ℎℎ
𝑇 𝜕𝐿

𝜕𝒉(𝑡+1) + 𝑾ℎ𝑜
𝑇 𝜕𝐿

𝜕𝒐(𝑡) (10)

For analysis, expanding the recurrent computation for any time step 1 ≤ t ≤ T
gives:

∂L

∂𝒉(𝑡) = ∑ (𝑾ℎℎ
𝑇)

𝑇−𝑖𝑇
𝑖=𝑡 𝑾ℎ𝑜

𝑇 𝜕𝐿

𝜕𝒐𝑇+𝑡−𝑖 (11)

As can be seen from (11) this straightforward linear example already
demonstrates a number of important issues with long sequence models,

including the possibility of very large values of 𝑾ℎℎ
𝑇. Eigenvalues greater than

one diverge and those smaller than one disappear in it. This is numerically
unstable, which manifests itself in the form of vanishing and exploding
gradients.

It is shown that the objective function L relies on the model parameters 𝑾𝑥ℎ
and 𝑾ℎℎ in the hidden layer through hidden states h(1), …, h(T). To compute

gradients with respect to these parameters 𝜕𝐿 𝜕𝑾𝑥ℎ⁄ ∈ ℝℎ×𝑑 and

𝜕𝐿 𝜕𝑾ℎℎ⁄ ∈ ℝℎ×ℎ , we employ the chain rule, yielding:

𝜕𝐿

𝜕𝑾𝑥ℎ
= ∑

𝜕𝐿

𝜕𝒉(𝑡) ×
𝜕𝒉(𝑡)

𝜕𝑾𝑥ℎ
= ∑

𝜕𝐿

𝜕𝒉(𝑡) 𝒙(𝑡)𝑇𝑇
𝑡=1

𝑇
𝑡=1 (12)

𝜕𝐿

𝜕𝑾ℎℎ
= ∑

𝜕𝐿

𝜕𝒉(𝑡) ×
𝜕𝒉(𝑡)

𝜕𝑾ℎℎ
= ∑

𝜕𝐿

𝜕𝒉(𝑡) 𝒉(𝑡−1)𝑇𝑇
𝑡=1

𝑇
𝑡=1 (13)

where 𝜕𝐿 𝜕𝒉(𝑡)⁄ which is recurrently computed by (9) and (10) is the key quantity
that affects numerical stability.

22

2.2 BPTT gradient challenges

2.2.1 Vanishing gradient problem

The vanishing gradient problem in RNNs is caused by the propagation of
gradients across time steps and recurrent connections. Now, let’s examine a
basic RNN cell that processes a series of inputs across time steps denoted as
t=1, t=2, ..., t=T.

• The RNN cell computes a new hidden state and produces an output at
each time step t by utilizing the previous time step's hidden state in
addition to the current input.

• The hidden state at time t-1 influences the hidden state at time step t.
This dependency on previous time steps causes the gradient
propagation through a chain of recurrent connections.

• The chain rule is used iteratively across the different time stages to
calculate gradients during the backpropagation through time process.
Starting at the last time step T, this iterative process moves backwards.

The vanishing gradient problem in RNNs comes from the fact that the repeated
multiplication of gradients at each time step can cause the gradients to become
very small as the propagate backwards through time. The gradients may
become almost zero if the RNN cell is initialized with minimal weights or the
sequence is long. Consequently, during training, the sequence’s early time
steps receive incredibly weak gradient signals.

Additionally, there is a weak or missing update to their respective weights. This
results in the slow convergence of learning and the loss of essential
information.

2.2.2 Exploding gradient problem

The exploding gradient problem is a challenge encountered during training
DNNs. It happens when the network’s loss function’s gradients become
unnecessarily huge in relation to the weights (parameters).

Exploding gradients are a problem that occurs when derivatives of the
layers of the neural network get larger as we go backward during
backpropagation. In essence, this is the opposite of the vanishing gradient
problem.

The root cause of this problem lies in the weights of the network, rather
than the choice of the activation function. High weight values lead to
correspondingly high derivatives, causing significant deviations in new weight
values from the previous ones. As a result, the gradient fails to converge and
can lead to the network oscillating around local minimum, making it challenging
to reach the global minimum point.

23

In summary, exploding gradients occur when weight values lead to
excessively large derivatives, making convergence difficult and potentially
preventing the neural network from effectively learning and optimizing its
parameters.

2.3 Modern RNNs

Modern RNN is a paradigm that symbolizes the ongoing search for better
sequential data processing in the field of neural network topologies. In this
section, it will be shown some of the well-known RNN architectures, such as
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).

Conventional RNN, LSTM, and GRU are all architectures designed for
processing sequential data and handling data sequences by hidden state that
memories temporal information.

2.3.1 Long Short-Term Memory (LSTM)

LSTM is an improved RNN model, explicitly designed to address the
challenge of capturing long-term dependencies in sequential data. LSTM
introduces a gating mechanism comprising input, forget, and output gates,
enabling the network to retain or discard information over extended sequences
more effectively. LSTM has found extensive applications in natural language
processing tasks, including language modeling, machine translation, and
sentiment analysis, where understanding context and temporal dependencies
is crucial [6].

In short, the LSTM architecture consists of a set of recurrently connected
sub-networks, known as memory blocks. The idea behind the memory block is
to maintain its state over time and regulate the information flow through non-
linear gating units. Fig. 6 shows the architecture of a LSTM block, which

involves the gates, the input signal 𝒙(𝑡), the output 𝒉(𝑡), the activation functions
and connections. The output of the block is recurrently connected back to the
block input and all of the gates [7].

24

Figure 6. Architecture of a typical LSTM block

Cell state from the previous time step, 𝑪(𝑡−1), is modified to get the cell

state at the current time step, 𝑪(𝑡) , without being multiplied directly with any
weight factor. The flow of information in this memory cell is controlled by several
computation units. In the previous Fig, ⊙ refers to the element-wise product

and ⨁ means element-wise summation. Four boxes are indicated with an
activation function, either the sigmoid function (𝜎) or tanh, and a set of weights.
These boxes apply a linear combination by performing matrix-vector
multiplications on their inputs. These units of computation with sigmoid
activation functions, whose output units are passed through ⊙, are called
gates.

In an LSTM cell, there are three different types of gates, which are
known as the forget gate, the input gate, and the output gate:

• The forget gate (𝒇𝑡) allows the memory cell to reset the cell state
without growing indefinitely. In fact, the forget gate decides which
information is allowed to go through and which information to suppress.
Now, (𝒇𝑡) is computed as follows:

 𝒇𝑡 = σ(𝑾𝑥𝑓𝒙(𝑡) + 𝑾ℎ𝑓𝒉(𝑡−1) + 𝒃𝑓) (14)

• The input gate (𝒊𝑡) and candidate value �̃�𝑡 are responsible for
updating the cell state. They are computed as follows:

 𝒊𝑡 = σ(𝑾𝑥𝑖𝒙
(𝑡) + 𝑾ℎ𝑖𝒉(𝑡−1) + 𝒃𝑖) (15)

 �̃�𝑡 = tanh(𝑾𝑥𝑐𝒙(𝑡) + 𝑾ℎ𝑐𝒉(𝑡−1) + 𝒃𝑐) (16)

 The cell state at time t is computed as follows:

 𝑪(𝑡) = (𝑪(𝑡−1) ⊙ 𝒇𝑡) ⊕ (𝒊𝑡 ⊙ �̃�𝑡) (17)

• The output gate (𝒐𝑡) decides how to update the values of hidden units:

25

 𝒐𝑡 = σ(𝑾𝑥𝑜𝒙(𝑡) + 𝑾ℎ𝑜𝒉(𝑡−1) + 𝒃𝑜) (18)

Given this, the hidden units at the current time step are computed as follows:

 𝒉(𝑡) = 𝒐𝑡 ⊙ tanh(𝑪(𝑡)) (19)

2.3.2 Gate Recurrent Unit (GRU)

Because back-propagation in LSTM involves a high number of parameters,
computation times are long. In [13], Cho et al. proposed the GRU, which has
fewer gates than LSTM, to shorten computation time. Although the design of
the GRU has been modified, its value is comparable to that of the LSTM. Figure
7 shows the graphical representation for GRU. Similar to LSTM, GRU uses
gating units to capture long-term dependencies in order to overcome the
vanishing and exploding gradient problem.

Figure 7. GRU block architecture

The GRU unit is defined by the below set of equations. In them �̃�𝑡 stands for
the hidden state candidate.

 𝑹𝑡 = σ(𝑾𝑥𝑟𝒙(𝑡) + 𝑾ℎ𝑟𝒉(𝑡−1) + 𝒃𝑟) (20)

 𝒁𝑡 = σ(𝑾𝑥𝑧𝒙(𝑡) + 𝑾ℎ𝑧𝒉(𝑡−1) + 𝒃𝑧) (21)

 �̃�𝑡 = tanh(𝑾𝑥ℎ𝒙(𝑡) + 𝑾ℎℎ(𝑹𝑡 ⊙ 𝒉(𝑡−1)) + 𝒃ℎ) (22)

 𝒉(𝑡) = (𝒉(𝑡−1) ⊙ 𝒁𝑡) ⊕ (𝟏 − 𝒁𝑡) ⊙ �̃�𝑡 (23)

26

3. Ensemble Learning

Ensemble algorithms are becoming more and more popular in the field of
machine learning because of their capacity to improve predictive performance
and robustness. The ensemble methods that are most frequently used are:
Random Forests, GBM, Adaptive Boosting (AdaBoost), XGBoost and
Bootstrap Aggregating (Bagging). This paper will focus on XGBoost’s
performance.

Decision trees are machine learning algorithms frequently used for both
classification and regression problems. They are hierarchical structures that
present a sequence of decisions based on the features of the input data. Every
leaf node in the tree indicates the expected result, and every internal node
represents a decision made in response to a specific feature. Recursively
dividing the feature space according to the feature that provides the optimal
split is the process of creating a decision tree. This method generates data
subsets that are progressively uniform in relation to the target variable. Until a
stopping condition is satisfied, like reaching a maximum depth or getting
minimum number of samples in each leaf node, this splitting process keeps
going. Decision trees are useful for understanding feature importance and
decision making processes since they are simple to read and show. Decision
trees also have the ability to independently choose features and find feature
connections, and they can handle both numerical and categorical data.

But decision trees can overfit, particularly if they develop too deeply or if
there are noise in the data. Techniques like pruning, limiting the maximum
depth of the tree or using ensemble methods like GBM can be used to solve
this problem.

3.1 Gradient Boosting

Boosting algorithms use an iterative process to combine weak learners,
learners who are slightly better than random, into strong learners [7]. Gradient
boosting is a boosting-like algorithm for regression problems. Given a training

dataset D = {𝑥𝑖 , 𝑦𝑖}1
𝑁, the goal of gradient boosting is to find an approximation,

�̂�(x), of the function 𝐹∗(x), which maps instances x to their output values y, by
minimizing the expected value of a given loss function, L(y,F(x)) [8]. Gradient
boosting builds an additive approximation of 𝐹∗(x) as a weighted sum of
functions:

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜌𝑚ℎ𝑚(𝑥) (24)

where 𝜌𝑚 is the weight of the 𝑚𝑡ℎ function, ℎ𝑚(𝑥). These functions are the
models of the ensemble (e.g. decision trees). The approximation is constructed
iteratively. First, a constant approximation of 𝐹∗(x) is obtained as:

 𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼

∑ 𝐿(𝑦𝑖 , 𝛼)𝑁
𝑖=1 (25)

Subsequent models are expected to minimize:

27

 (𝜌𝑚, ℎ𝑚) = argmin
𝜌,ℎ

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝜌ℎ(𝑥𝑖))𝑁
𝑖=1 (26)

However, instead of solving the optimization problem directly, each ℎ𝑚 can be

seen as a greedy step in a gradient descent optimization for 𝐹∗. For that, each

model ℎ𝑚 is trained on a new dataset D = {𝑥𝑖 , 𝑟 𝑚𝑖}𝑖=1
𝑁 where the

pseudo residuals, 𝑟 𝑚𝑖, are calculated by:

 𝑟𝑚𝑖 = [
𝜕𝐿(𝑦𝑖,𝐹(𝑥))

𝜕𝐹(𝑥)
]

𝐹(𝑥)= 𝐹𝑚−1(𝑥)
 (27)

The value of 𝜌𝑚 is subsequently computed by solving a line search optimization
problem.

This algorithm may encounter overfitting if the iterative process lack proper
regularization. In some cases, if the model ℎ𝑚 fits the pseudo-residuals
perfectly, the next iteration may generate zero pseudo-reisudals, prematurely
terminating the process. To regulate the additive nature of gradient boosting,
various regularization parameters are used. The intuitive way to regularize
gradient boosting is to apply shrinkage to reduce each gradient decent step:

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑣𝜌𝑚ℎ𝑚(𝑥) (28)

with 𝑣 = (0, 1]. The value of 𝑣 is usually set to 0.1.

Furthermore, additional regularization can be attained by constraining the
complexity of trained models. In the case of decision trees, this may involve
setting limitations on the trees’ depth or the bare minimum of instances needed
to divide a node. Additionally, another set of parameters that are integrated into
different versions of gradient boosting include those that provide randomness
to the base learners, which improves ensemble generalization even more, such
as random subsampling without replacement.

3.2 XGBoost

XGBoost is a highly efficient and scalable implementation of gradient
boosting. It is widely regarded as one of the most powerful and effective
machine learning algorithms. One of the key characteristics of XGBoost is its
ability to handle missing data effectively through robust algorithms. It introduces
several optimizations, including parallel computing, tree pruning, and
regularization techniques, to enhance training speed and model performance
[9]. The loss function used to control the complexity of the trees is:

 𝐿 = ∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)) + ∑ Ω(ℎ𝑚)𝑀
𝑚=1

𝑁
𝑖=1 (29)

 Ω(ℎ) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2 (30)

where T is the number of leaves of the tree and 𝜔 are the output scores of the
leaves. Pre-pruning can be achieved by integrating this loss function with the
split criterion of decision trees. Trees with higher values of 𝛾 are simpler. The
minimal loss reduction gain required to separate an internal node is determined
by the value of 𝛾. Also, shrinkage is an extra regularization parameter in

28

XGBoost that reduces the additive expansion’s step size. Lastly, other
strategies like the depth of the trees, etc., can also be used to limit the
complexity of the trees. Tree complexity reduction also leads to shorter training
times and reduced storage space needed for the models.

3.2.1 XGBoost Parameters Tuning

The overall parameters have been divided into 3 categories:

1) General Parameters – define the overall functionality of XGBoost

• booster – select the type of the model, tree-based or linear model

• nthread – used for parallel processing, number of available threads

2) Booster Parameters – tuning the individual booster/ tree at each
step

3) Learning Task Parameters – define the optimization objective and
the metric to be calculated at each step

• objective – define the loss function to be minimized (for regression it is
used squarederror, squaredlogerror,logistic, absoluteerror)

• eval_metric – used for validation data (typical values: root mean square
error, mean absolute error, negative log-likelihood, multiclass
classification error rate, area under the curve)

Booster parameters are shown in Table 1, and algorithm used for fine tuning
parameters is shown in Fig. 8.

29

Figure 8. An algorithm used for XGBoost Parameters Tuning

30

Table 1: Booster Parameters for XGBoost Parameters Tuning

Booster
Parameter

Description Typical Values

eta Analogous to GBM learning rate. 0.01-0.2

min_child_weight The minimum sum of weights of
observations required in a child.

Tuned used
cross-validation

max_depth The maximum depth of a tree. Used to
control over-fitting.

3-10

max_leaf_nodes The maximum number of terminal
nodes or leaves in a tree.

gamma Specifies the minimum loss reduction
required to make a split.

Tuned
depending on
loss function

subsample Denotes the fraction of observations to
be random samples for each tree.

0.5-1

colsample_by_tree Denotes the fraction of columns to be
random samples for each tree.

0.5-1

lambda L2 regularization term on weights
(analogous to Ridge regression).

For reducing
overfitting

alpha L1 regularization term on weight
(analogous to Lasso regression).

For high
dimensionality

4. Results and Discussion

This paper uses time series dataset to examine how well ensemble
algorithm XGBoost performs with RNN models [10,11]. The dataset used in this
research was obtained from the „Wind Power Generation Data – Forecasting“
Kaggle dataset [12].

The input variables utilized for our models include temperature (in degrees
Fahrenheit) at a height of 2 meters above the surface, relative humidity
(expressed as a percentage) at the same height, wind speed (in meters per
second) at both 10 and 100 meters above the surface, wind direction (in
degrees, ranging from 0 to 360) at both heights, and wind gusts (in meters per
second) at 100 meters above the surface. Our target output is the turbine
output, which has been normalized to a range between 0 and 1.

The five years included in the wind power forecasting dataset are 2017
through 2021. The training phase used data from the first four years, while the
fifth year served for testing the models. The implementation used the
Tensorflow and Keras libraries to build RNN models, as well as the XGBoost
library to create XGBoost models.

31

Firstly, we identified the best model among various RNN architectures. The
experiment was performed with Simple RNN, LSTM, and GRU models.
Additionally, we also explored a few configurations with different numbers of
layers and epochs. The models were trained with and without dropout layers
using dropout probabilities (0.2 and 0.3) to evaluate the impact of
regularization. The dropout layer is a paradigm for regularization technique for
preventing neural network overfitting by randomly setting a percentage of input
units to zero during training. This causes the network to learn more robust
features that are not dependent on individual neurons. The training time for
each model has been measured. The results for each RNN model are
presented in Table 2.

Table 2: The results for the various RNN models

NN
architecture

+

Number of
Epochs

Model

type

Without
Regularization

With Regularization
(Dropout = 0.2)

With Regularization
(Dropout = 0.3)

MSE
Training
Time [s]

MSE
Training
Time [s]

MSE
Training
Time [s]

1 hidden
layer with 64

neurons,
10 Epochs

RNN 0.3491 20.89 0.1703 15.93 0.1951 14.98

LSTM 0.1779 47.01 0.1716 47.78 0.1730 49.43

GRU 0.1955 40.31 0.1676 29.09 0.1737 35.41

1 hidden
layer with 64

neurons,
100 Epochs

RNN 0.1734 182.69 0.1664 186.14 0.1657 181.52

LSTM 0.1716 260.17 0.1675 222.59 0.1641 223.85

GRU 0.1774 222.05 0.1686 206.06 0.1701 212.32

2 hidden
layers with

64 neurons,
10 Epochs

RNN 0.2013 26.28 0.1994 24.67 0.1762 30.77

LSTM 0.1823 74.49 0.1693 55.51 0.1706 52.65

GRU 0.1856 70.99 0.1673 49.49 0.1767 42.42

2 hidden
layers with

64 neurons,
100 Epochs

RNN 0.1787 289.09 0.1738 250.47 0.1703 253.28

LSTM 0.1801 431.623 0.1730 407.57 0.1698 375.02

GRU 0.1750 391.01 0.1687 361.99 0.1712 337.39

As we can see, the best results in terms of mean squared error
(MSE=0.1641) was achieved by the LSTM model with one hidden layer of 64
nodes, trained for 100 epochs. Table 2 also shows that the NN with a dropout
layer performs better than the one without, as it helps prevent overfitting.
Furthermore, the training time for GRU models is consistently shorter than that
for LSTM models, which is understandable given the simpler structure of the
GRU model compared to the LSTM.

32

In Fig. 9 we can observe the performance of the aforementioned LSTM
model by comparing predicted with actual values of active power for the year
2021.

Figure 9. The performance of the best RNN (LSTM) model

After that, the authors attempted to find the best XGBoost model using the
algorithm presented in Fig 8. Grid search was used as the hyperparameter
tuning technique. In the first iteration, the optimal values for 'max_depth' and
'min_child_weight' were identified. Following this, the optimal values for
'subsample' and 'colsample_bytree' were determined, and the learning rate
parameter 'eta' was subsequently reduced. In the second iteration, the entire
process was repeated for the new learning rate to find the optimal parameters.

Additional parameters used in the XGBoost model include the number of
boosting rounds, which was set to 10,000, 'verbose_eval' set to 50 (indicating
that a message will be displayed every 50 rounds), and 'early_stopping_rounds'
set to 50 (indicating that the training process will stop if the objective function
does not change for 50 consecutive rounds). The entire parameter tuning
process is represented in Table 3.

As we can see, parameter tuning resulted in an improvement of approximately
11%. In Fig. 10, the performance of the best XGBoost model is shown by
comparing predicted and actual values of active power for the year 2021.

33

Table 3: The parameters tuning process for XGBoost

XGBoost Mean Squared Error

Without
Parameters

Tuning
0.1679

With
Parameters

Tuning

First Iteration MSE

’max_depth’ in the range of values (2,12),
’min_child_weight’ in the range of values (2,8)

0.1538

Best results:

’max_depth’ = 8, ’min_child_weight’ = 7

’subsample’ in the range of the values (0.7,1),

’colsample_bytree’ in the range of values
(0.7,1)

0.1538

Best results:

’subsample’ = 1, ’colsample_bytree’ = 1

’eta’ in the range of values
(0.3,0.25,0.2,0.15,0.1,0.05,0.01,0.005)

0.1514

Best results:

’eta’ = 0.05

Second Iteration MSE

’max_depth’ in range (2,12),
’min_child_weight’ in range (2,8)

0.1506

Best results:

’max_depth’ = 11, ’min_child_weight’ = 7

’subsample’ in range (0.7,1),
’colsample_bytree’ in rangee (0.7,1)

0.1496

Best results:

’subsample’ = 0.7, ’colsample_bytree’ = 1

34

Figure 10. The performance of the best XGBoost model

Our analysis demonstrated that both models are capable of capturing the
complex temporal dependencies inherent in wind power generation data.
However, XGBoost consistently outperformed RNNs, providing slightly better
predictive accuracy across various performance metrics, including MSE. The
superior performance of XGBoost can be attributed to its ability to handle non-
linearity, missing data and outliers more effectively, while requiring less
hyperparameter tuning than RNNs. On the other hand, RNNs, despite their
potential to model temporal dependencies through recurrent connections,
showed limitations in convergence speed and sensitivity to training data size
and sequence length. The findings suggest that for this specific multivariate
time series forecasting problem, XGBoost is more efficient and reliable
approach.

5. Conclusion

This paper underscores the necessity of analyzing a variety of ML models
to address the needs of modern power systems expanded with wind farms as
renewable sources. The applications of wind farms within power systems
necessitate the comprehensive analysis of multiple types of ML models to
harness their potential.

One of the key strategies in power system forecasting, control, and
management is time series analysis. The choice of model for forecasting can
significantly impact the accuracy and efficiency of predictions.

In this paper, the authors compared RNN algorithms with GBM algorithms.
The results indicate that GBM algorithms with tuned parameters slightly

35

outperform DNN models. This is expected given the limited dataset, which likely
prevents the DNNs from fully utilizing their ability to learn complex features.
Nonetheless, the DNN models still perform well, suggesting they could achieve
better results with larger datasets.

While RNNs are foundational, LSTMs and GRUs offer more sophisticated
mechanisms for handling time series data. In addition, XGBoost can be
powerful when the data is suitably transformed and can capture complex
patterns that recurrent networks might miss.

In future work, the authors plan to enhance the prediction models using
state-of-the-art algorithms for multivariate time series, such as transformers.
They also aim to apply these models to real-world systems and optimize their
performance.

6. Acknowledgment

This work was supported in part by the Ministry of Science, Technological
Development and Innovation of the Republic of Serbia under the Contract on
the realization and financing of the scientific research work of Research and
Innovation Organizations in 2024.

References

[1] Z. Tian, "A State-Of-The-Art Review on Wind Power Deterministic
Prediction," Wind Engineering, vol. 45, pp. 1374–1392, 2021.

[2] I. H. Sarker, "Deep Learning: A Comprehensive Overview on Techniques,
Taxonomy, Applications and Research Directions," SN Computer Science,
vol. 2, 420, 2021.

[3] A. Zhang, Z. C. Lipton, M. Li, A. J. Smola, Dive into Deep Learning. 2023.
[Online]. Available: https://d2l.ai/

[4] P. J. Werbos, "Backpropagation through time: what it does and how to do it,"
Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

[5] I. Danish & Abbas, Asad. (2024). A Deep Dive into Neural Networks:
Architectures, Training Techniques, and Practical Implementations. Journal
of Environmental Sciences and Technology, vol. 02, pp. 61−71, 2023.
https://doi.org/10.13140/RG.2.2.14866.84162

[6] G. Van Houdt, C. Mosquera, G. Nápoles, "A Review on the Long Short-Term
Memory Model," Artificial Intelligence Review, vol. 53, pp. 5929−5955, 2020.

[7] Y. Freund, R. E. Schapire, "A Short Introduction to Boosting," Journal of
Japanese Society for Artificial Intelligence, vol. 14, pp. 771−780, 1999.

[8] J. H. Friedman, "Greedy function approximation: a Gradient Boosting
machine," The Annals of Statistics, vol. 29, pp. 1189–1232, 2001.

https://link.springer.com/journal/42979
https://d2l.ai/
https://doi.org/10.13140/RG.2.2.14866.84162

36

[9] T. Chen, C. Guestrin. "Xgboost: A scalable tree boosting system," in Proc.
22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, (New York, NY, USA, 13 Aug. 2016), p.p. 785–794.

[10] A. Mobarak, A. Y. Owda, M. Owda, "Electrical Load Forecasting Using
LSTM, GRU, and RNN Algorithms," Energies, vol. 16, 2283, 2023.

[11] M.Chen, et al., "XGBoost-Based Algorithm Interpretation and Application on
Post-Fault Transient Stability Status Prediction of Power System", IEEE
Access, vol. 7, pp. 13149−13158, 2019.

[12] Data available: https://www.kaggle.com/datasets/mubashirrahim/wind-
power-generation-data-forecasting/data

[13] J. Chung, et al., "Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling," 2015. [Online]. Available:
https://doi.org/10.48550/arXiv.1412.3555

Kratak sadržaj: Važan korak ka održivoj budućnosti je uključivanje
obnovljivih izvora energije u elektroenergetsku mrežu. Energija vetra je
značajna zbog svoje široke dostupnosti i minimalnog uticaja na životnu
sredinu. U radu je prikazana komparativna analiza rekurentnih algoritama
neuronske mreže i mašina za povećanje gradijenta primenjenih na
podatke vremenske serije za regresivne procene aktivne snage koju
generiše vetropark. Algoritmi sa pojačanjem gradijenta kombinuju
prednosti nekoliko modela mašinskog učenja (stabla odlučivanja,
nasumične šume, itd.) da bi proizveli moćan model predviđanja. Pored
konvencionalnih rekurentnih neuronskih mreža, članak se bavi
dugotrajnom kratkoročnom memorijom i taktovanom rekurentnom
neuralnom jedinicom kao najsavremenijim modelima za analizu
vremenskih serija i predviđanja. Sveobuhvatna analiza je sprovedena na
velikom skupu podataka o proizvodnji energije iz vetroelektrana.

Ključne reči: Mašinsko učenje, rekurentna neuronska mreža, dugotrajna
kratkoročna memorija, zatvorena ponavljajuća jedinica, mašine za
povećanje gradijenta, XGBoost, vetropark, proizvodnja energije.

Komparativna analiza dubokih neuronskih

mreža i algoritama sa pojačanjem gradijenta u

dugoročnom predviđanju snage vetra

Luka Ivanović , Saša D. Milić , Živko Sokolović , Aleksandar Rakić

Rad primljen u uredništvo: 28.05.2024. godine.

Rad prihvaćen: 02.10.2024. godine.

https://ieeexplore.ieee.org/author/37086619049
https://www.kaggle.com/datasets/mubashirrahim/wind-power-generation-data-forecasting/data
https://www.kaggle.com/datasets/mubashirrahim/wind-power-generation-data-forecasting/data
https://doi.org/10.48550/arXiv.1412.3555
https://orcid.org/0000-0003-4345-4523
https://orcid.org/0000-0001-5757-3430
https://orcid.org/0009-0009-0747-6320
https://orcid.org/0000-0002-3682-1754

	1. Introduction
	2. Deep Neural Networks (DNN)
	2.1 Recurrent Neural Networks
	2.1.1 Computing activations in an RNN
	2.1.2 Training RNNs using backpropagation through time (BPTT)

	2.2 BPTT gradient challenges
	2.2.1 Vanishing gradient problem
	2.2.2 Exploding gradient problem

	2.3 Modern RNNs
	2.3.1 Long Short-Term Memory (LSTM)
	2.3.2 Gate Recurrent Unit (GRU)

	3. Ensemble Learning
	3.1 Gradient Boosting
	3.2 XGBoost
	3.2.1 XGBoost Parameters Tuning

	4. Results and Discussion
	5. Conclusion
	6. Acknowledgment
	References

