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Abstract: A vital step toward a sustainable future is the power grid's 
incorporation of renewable energy sources. Wind energy is significant 
because of its broad availability and minimal environmental impact. The 
paper presents a comparative analysis of recurrent neural network 
algorithms and gradient boosting machines applied to time series data for 
the regression issue of estimating the active power generated by a wind 
farm. Gradient boosting algorithms combine the advantages of a few 
machine learning models (decision trees, random forests, etc.) to produce 
a powerful prediction model. In addition to conventional recurrent neural 
networks, the article deals with long short-term memory and gated 
recurrent unit as cutting-edge models for time series analysis and 
predictions. A comprehensive analysis was carried out on a large wind 
power generation data set. 
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1. Introduction 

Power systems are undergoing a revolution thanks to machine learning, 
which makes it possible to accurately estimate load, allocate resources 
optimally, and improve grid stability. Machine learning models predict 
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generation from wind energy sources, making it easier to integrate renewable 
energy sources into the grid and increasing integration efficiency.  
The wind power forecast comprises four time scales: ultra-short-term, short-
term, medium-term and long-term [1]. An ultra-short-term forecasting is used to 
predict power production in the next hours, which is useful for managing the 
daily operations of wind farm (WF) units. Short-term forecasting is useful for 
making predictions several hours to several days ahead of time, which is 
beneficial for wind turbine maintenance and the economy as a whole. The 
medium-term forecast is useful for developing quarterly plans for power 
generation for grid and wind farm construction, as it provides predictions 
several days to several months in advance.  
In order to support strategic planning and investment decisions for renewable 
energy projects, long-term wind power forecasting involves prediction wind 
power generation patterns one to several years into the future. This approach 
offers insights into the possible expansion and development of wind power 
infrastructure by accounting for long-term climate trends.  
The hands-on machine learning models have replaced and improved existing 
analyzing and forecasting methods in the power industry in the last few years. 
The adequate ML model selection is still a demanding research and 
engineering effort. One of the contributions of this paper is the selection method 
and practical demonstration of the application of several ML models. In this 
research, the authors focus on long-term forecasting with two Recurrent Neural 
Network (RNN) models compared to the Extreme Gradient Boosting (XGBoost) 
model, which represents an ensemble of the Gradient Boosting Machines 
(GBM) models, to assess which is more suitable and reliable for long-term wind 
power forecasting. The results will serve as a foundation for future research 
and further expansion of knowledge in wind power forecasting. 
 
The paper is organized as follows: Section 2 presents the theoretical framework 
for deep neural network algorithms, and Section 3 offers insights into ensemble 
algorithms including GBM and XGBoost. Section 4 provides the comparative 
results. The discussion, conclusion, and future research are presented in 
Section 5. 

2. Deep Neural Networks (DNN) 

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) 
are often used terms to describe intelligent systems or software. Figure 1 shows 
the current state of DL in relation to ML and AI. According to Figure 1, DL is 
both of subset of ML and a component of the larger field of AI. In general, AI 
involves imbuing machines or systems with human behavior and intelligence, 
whereas ML involves learning from data or experiences and automating the 
development of analytical models. DL involves extracting information from data 
using multi-layer neural networks, with “deep” referring to the several levels 
through which data is processed to create a data-driven model [2]. 
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Thus, DL can be considered as a core technique within AI, representing an 
edge in artificial intelligence that enables the development of intelligent systems 
and automation. Importantly, DL improves AI to a new level, often known as 
“Smarter AI”, and DL approaches play an important role in advanced analytics 
and intelligent decision-making. Overall, DL algorithms have the ability to 
significantly change the modern world, particularly in terms of providing a strong 
computational engine and contributing to technology-driven automation, smart 
systems, and intelligent decision-making in line with the goals. 

 
Figure 1. A comparison of Deep Learning with Machine Learning and Artificial 

Intelligence  

A typical DNN contains multiple hidden layers including input and output 
layers. Figure 2 shows a general structure of a DNN (hidden layer = N, N ≥ 2) 
comparing with a shallow network (hidden layer = 1). 

 
Figure 2. A general architecture of a shallow network with one hidden layer and a deep 

neural network with multiple hidden layers 

2.1 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are deep learning models that capture 
sequential dynamics through feedback connections, similar to cycles within a 
network of nodes. While this approach may appear contradictory at first, the 
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precise description of recurrent edges eliminates ambiguity, unlike in 
Feedforward Neural Networks (FNNs), where computation order is 
unambiguous. RNNs are unrolled over time steps, with consistent parameters 
applied at each step, synchronously propagating standard connections to 
succeeding layers and dynamically transferring information across adjacent 
time steps by recurrent connections. RNNs, shown as an unfolded perspective 
in Fig. 3, can be thought of as feedforward neural networks in which the 
parameters of each layer (both standard and recurrent) are shared over time 
steps [3]. 

 

 
Figure 3. Unfolded RNN 

 

Each hidden unit in a FNNs receives a single input, which is the input 
layer’s net preactivation. In contrast, each hidden unit in a RNN receives two 
separate inputs: preactivation from the input layer and activation of the same 
hidden layer from the previous time step, t-1. Initially, at time step t=0, the 
hidden units are initialized to zeros or small random numbers. At time steps 
where t>0, the hidden units receive input from the current data point x(t), as 
well as the previous hidden unit values at t-1, denoted as h(t-1).  

2.1.1 Computing activations in an RNN 

The different weight matrices in a single-layer RNN are as follows (Fig.4):  

• Wxh: The weight matrix between the input 𝐱(t) and the hidden layer 

h 

• Whh: The weight matrix associated with the recurrent edge 

• Who: The weight matrix between the hidden layer and output layer 
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Figure 4. Unfolded RNN with associated weight matrices 

Activations are computed in a manner similar to typical multilayer 

perceptrons and other types of FNNs. For the hidden layer, the net input, 𝐳h 

(preactivation), is computed by a linear combination, that is, simply compute 
the sum of the multiplications of the weight matrices with the respective vectors 
and add the bias unit: 

                                    𝒛ℎ
(𝑡)

= 𝑾𝑥ℎ𝒙(𝑡) + 𝑾ℎℎ𝒉(𝑡−1) + 𝒃ℎ                  (1) 

Then, the activations of the hidden units at the time step, t, are calculated as 
follows: 

                            𝒉(𝑡) = 𝜙ℎ(𝒛ℎ
(𝑡)

) = 𝜙ℎ(𝑾𝑥ℎ𝒙(𝑡) + 𝑾ℎℎ𝒉(𝑡−1) + 𝒃ℎ)                (2) 

Once the activations of the hidden units at the current time step are computed, 
then the activations of the output units will be computed, as follows: 

                                              𝒐(𝑡) = 𝜙𝑜(𝑾ℎ𝑜𝒉(𝑡) + 𝒃𝑜)                                    (3) 

2.1.2 Training RNNs using backpropagation through time (BPTT) 

Backpropagation in RNNs is known as BPTT [4]. This approach needs us 
to expand or unroll an RNN’s computational graph one step at a time. The 
unrolled RNN is essentially a FNN with a unique property: the same parameters 
appear at each time step. Then, just as in any FNN, the chain rule to 
backpropagate gradients across the unrolled network can be used. The 
gradient with respect to each parameter must be added across all places where 
the parameter appears in the unrolled net. If the parameters were time-variant, 
the model could adapt to changing data patterns but would increase in 
complexity, making training more difficult and computationally expensive. This 
could lead to improved performance in non-stationary processes, though 
algorithms like transformers or attention mechanisms may be better suited for 
such tasks. 

In the following section, we will demonstrate how to compute the gradients 
of the objective function with respect to all decomposed model parameters. To 
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simplify, we consider an RNN without bias parameters. The activation function 
in the hidden layer employs the identity mapping (𝜙(𝑥) = 𝑥). For time step t, 

define the single input and output as 𝒙(𝑡) ∈ ℝ𝑑 and 𝒚(𝑡), respectively. The 

hidden state 𝒉(𝑡) ∈ ℝℎ and the output 𝒐(𝑡) ∈ ℝ𝑞 are computed as follows: 

                                                        𝒉(𝑡) = 𝑾𝑥ℎ𝒙(𝑡) + 𝑾ℎℎ𝒉(𝑡−1)        (4) 

                                                                 𝒐(𝑡) = 𝑾ℎ𝑜𝒉(𝑡)         (5) 

where 𝑾𝑥ℎ ∈ ℝℎ×𝑑, 𝑾ℎℎ ∈ ℝℎ×𝑑 and 𝑾ℎ𝑜 ∈ ℝℎ×𝑑 are the weight parameters. 

Denote by 𝑙(𝒐(𝑡), 𝒚(𝑡)) the loss at time step t. Our objective function, the loss 

over T time steps from the beginning of the sequence is thus: 

                                                       𝐿 =
1

𝑇
∑ 𝑙(𝒐(𝑡), 𝒚(𝑡))  𝑇

𝑡=1                                          (6) 

To visualize the dependencies between model variables and parameters during 
RNN computation, we can create a computational graph for the model as 
shown in Figure 5: 

 

 
Figure 5. Computational graph showing dependencies for an RNN model with three 
time steps. Boxes represent variables (not shaded) and circles represent operators 

 

The model depicted in Fig.4 involves parameters denoted as Wxh, Whh and Who. 
Usually, gradient corresponding to these parameters: 𝝏𝑳/𝝏𝑾𝒙𝒉, 𝝏𝑳/𝝏𝑾𝒉𝒉 and 

𝝏𝑳/𝝏𝑾𝒉𝒐 must be computed in order to train this model.  

We can compute and store the gradients progressively by navigating in the 
opposite direction of the arrows, based on the relationships shown in Fig 3. 
First, it is quite simple to differentiate the objective function at any time step t, 
with respect to the model output: 

 

                                           
𝜕𝐿

𝜕𝒐(𝑡) =
𝜕𝑙(𝒐(𝑡),𝒚(𝑡))

𝑇∙𝜕𝒐(𝑡) ∈ R𝑂                                            (7)             
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We can now compute the gradient of the objective function with respect to the 
parameter Who in the output layer. According to Fig. 3, the objective function L 
depends Who through o(1), ..., o(T). Employing the chain rule gives us: 

                                           
𝜕𝐿

𝜕𝑾ℎ𝑜
= ∑

𝜕𝐿

𝜕𝒐(𝑡) ×
𝜕𝒐(𝑡)

𝜕𝑾ℎ𝑜
= ∑

𝜕𝐿

𝜕𝒐(𝑡) 𝒉(𝑡)𝑇𝑇
𝑡=1

𝑇
𝑡=1         (8) 

where  𝛛𝐋/𝛛𝐨(t)  is given by (7). 

Next, at the final time step T, the objective function L depends on the hidden 

state h(T) only via o(T). Therefore, the gradient 𝛛𝐋/𝛛𝐡(t)  ∈ ℝℎ is: 

                                        
∂L

∂𝒉(𝑇) =
𝜕𝐿

𝜕𝒐(𝑇) ×
𝜕𝒐(𝑇)

𝜕𝒉(𝑇) = 𝑾ℎ𝑜
𝑇 𝜕𝐿

𝜕𝒐(𝑇)         (9) 

The complexity increases for any time step t < T where the objective 
function L relies on h(t) through h(t+1) and o(t). By applying the chain rule, the 

gradient of the hidden state 𝛛𝐋/𝛛𝐡(t)  ∈ ℝℎ at any time step t < T can be 
recursively computed as: 

           
∂L

∂𝒉(𝑡) =
𝜕𝐿

𝜕𝒉(𝑡+1) ×
𝜕𝒉(𝑡+1)

𝜕𝒉(𝑇) + 
𝜕𝐿

𝜕𝒐(𝑡) ×
𝜕𝒐(𝑡)

𝜕𝒉(𝑡) = 𝑾ℎℎ
𝑇 𝜕𝐿

𝜕𝒉(𝑡+1) + 𝑾ℎ𝑜
𝑇 𝜕𝐿

𝜕𝒐(𝑡)           (10) 

For analysis, expanding the recurrent computation for any time step 1 ≤ t ≤ T 
gives: 

                                         
∂L

∂𝒉(𝑡) = ∑ (𝑾ℎℎ
𝑇)

𝑇−𝑖𝑇
𝑖=𝑡 𝑾ℎ𝑜

𝑇 𝜕𝐿

𝜕𝒐𝑇+𝑡−𝑖                  (11) 

As can be seen from (11) this straightforward linear example already 
demonstrates a number of important issues with long sequence models, 

including the possibility of very large values of 𝑾ℎℎ
𝑇. Eigenvalues greater than 

one diverge and those smaller than one disappear in it. This is numerically 
unstable, which manifests itself in the form of vanishing and exploding 
gradients. 

It is shown that the objective function L relies on the model parameters 𝑾𝑥ℎ 
and 𝑾ℎℎ in the hidden layer through hidden states h(1), …, h(T). To compute 

gradients with respect to these parameters 𝜕𝐿 𝜕𝑾𝑥ℎ⁄ ∈ ℝℎ×𝑑 and        

𝜕𝐿 𝜕𝑾ℎℎ⁄ ∈ ℝℎ×ℎ , we employ the chain rule, yielding: 

                               
𝜕𝐿

𝜕𝑾𝑥ℎ
= ∑

𝜕𝐿

𝜕𝒉(𝑡) ×
𝜕𝒉(𝑡)

𝜕𝑾𝑥ℎ
= ∑

𝜕𝐿

𝜕𝒉(𝑡) 𝒙(𝑡)𝑇𝑇
𝑡=1

𝑇
𝑡=1                         (12) 

                         
𝜕𝐿

𝜕𝑾ℎℎ
= ∑

𝜕𝐿

𝜕𝒉(𝑡) ×
𝜕𝒉(𝑡)

𝜕𝑾ℎℎ
= ∑

𝜕𝐿

𝜕𝒉(𝑡) 𝒉(𝑡−1)𝑇𝑇
𝑡=1

𝑇
𝑡=1                           (13) 

where 𝜕𝐿 𝜕𝒉(𝑡)⁄  which is recurrently computed by (9) and (10) is the key quantity 
that affects numerical stability. 
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2.2 BPTT gradient challenges 

2.2.1 Vanishing gradient problem 

The vanishing gradient problem in RNNs is caused by the propagation of 
gradients across time steps and recurrent connections. Now, let’s examine a 
basic RNN cell that processes a series of inputs across time steps denoted as 
t=1, t=2, ..., t=T.  

• The RNN cell computes a new hidden state and produces an output at 
each time step t by utilizing the previous time step's hidden state in 
addition to the current input.  

• The hidden state at time t-1 influences the hidden state at time step t. 
This dependency on previous time steps causes the gradient 
propagation through a chain of recurrent connections. 

• The chain rule is used iteratively across the different time stages to 
calculate gradients during the backpropagation through time process. 
Starting at the last time step T, this iterative process moves backwards. 

The vanishing gradient problem in RNNs comes from the fact that the repeated 
multiplication of gradients at each time step can cause the gradients to become 
very small as the propagate backwards through time. The gradients may 
become almost zero if the RNN cell is initialized with minimal weights or the 
sequence is long. Consequently, during training, the sequence’s early time 
steps receive incredibly weak gradient signals.  

Additionally, there is a weak or missing update to their respective weights. This 
results in the slow convergence of learning and the loss of essential 
information. 

2.2.2 Exploding gradient problem 

The exploding gradient problem is a challenge encountered during training 
DNNs. It happens when the network’s loss function’s gradients become 
unnecessarily huge in relation to the weights (parameters).  

Exploding gradients are a problem that occurs when derivatives of the 
layers of the neural network get larger as we go backward during 
backpropagation. In essence, this is the opposite of the vanishing gradient 
problem. 

The root cause of this problem lies in the weights of the network, rather 
than the choice of the activation function. High weight values lead to 
correspondingly high derivatives, causing significant deviations in new weight 
values from the previous ones. As a result, the gradient fails to converge and 
can lead to the network oscillating around local minimum, making it challenging 
to reach the global minimum point. 
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In summary, exploding gradients occur when weight values lead to 
excessively large derivatives, making convergence difficult and potentially 
preventing the neural network from effectively learning and optimizing its 
parameters. 

2.3 Modern RNNs 

Modern RNN is a paradigm that symbolizes the ongoing search for better 
sequential data processing in the field of neural network topologies. In this 
section, it will be shown some of the well-known RNN architectures, such as 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). 

Conventional RNN, LSTM, and GRU are all architectures designed for 
processing sequential data and handling data sequences by hidden state that 
memories temporal information. 

2.3.1 Long Short-Term Memory (LSTM) 

LSTM is an improved RNN model, explicitly designed to address the 
challenge of capturing long-term dependencies in sequential data. LSTM 
introduces a gating mechanism comprising input, forget, and output gates, 
enabling the network to retain or discard information over extended sequences 
more effectively. LSTM has found extensive applications in natural language 
processing tasks, including language modeling, machine translation, and 
sentiment analysis, where understanding context and temporal dependencies 
is crucial [6]. 

In short, the LSTM architecture consists of a set of recurrently connected 
sub-networks, known as memory blocks. The idea behind the memory block is 
to maintain its state over time and regulate the information flow through non-
linear gating units. Fig. 6 shows the architecture of a LSTM block, which 

involves the gates, the input signal 𝒙(𝑡), the output 𝒉(𝑡), the activation functions 
and connections. The output of the block is recurrently connected back to the 
block input and all of the gates [7]. 
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Figure 6. Architecture of a typical LSTM block 

Cell state from the previous time step, 𝑪(𝑡−1), is modified to get the cell 

state at the current time step, 𝑪(𝑡) , without being multiplied directly with any 
weight factor. The flow of information in this memory cell is controlled by several 
computation units. In the previous Fig, ⊙ refers to the element-wise product 

and ⨁ means element-wise summation. Four boxes are indicated with an 
activation function, either the sigmoid function (𝜎) or tanh, and a set of weights. 
These boxes apply a linear combination by performing matrix-vector 
multiplications on their inputs. These units of computation with sigmoid 
activation functions, whose output units are passed through ⊙, are called 
gates. 

In an LSTM cell, there are three different types of gates, which are 
known as the forget gate, the input gate, and the output gate: 

• The forget gate (𝒇𝑡) allows the memory cell to reset the cell state 
without growing indefinitely. In fact, the forget gate decides which 
information is allowed to go through and which information to suppress. 
Now, (𝒇𝑡)  is computed as follows: 

                                          𝒇𝑡 = σ(𝑾𝑥𝑓𝒙(𝑡) + 𝑾ℎ𝑓𝒉(𝑡−1) + 𝒃𝑓)                               (14) 

• The input gate (𝒊𝑡) and candidate value �̃�𝑡 are responsible for 
updating the cell state. They are computed as follows: 

                                   𝒊𝑡 = σ(𝑾𝑥𝑖𝒙
(𝑡) + 𝑾ℎ𝑖𝒉(𝑡−1) + 𝒃𝑖)                               (15) 

                                �̃�𝑡 = tanh(𝑾𝑥𝑐𝒙(𝑡) + 𝑾ℎ𝑐𝒉(𝑡−1) + 𝒃𝑐)                           (16) 

  The cell state at time t is computed as follows: 

                                           𝑪(𝑡) = (𝑪(𝑡−1) ⊙ 𝒇𝑡) ⊕ (𝒊𝑡 ⊙ �̃�𝑡)                                 (17) 

• The output gate (𝒐𝑡) decides how to update the values of hidden units: 
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                                   𝒐𝑡 = σ(𝑾𝑥𝑜𝒙(𝑡) + 𝑾ℎ𝑜𝒉(𝑡−1) + 𝒃𝑜)                             (18) 

Given this, the hidden units at the current time step are computed as follows: 

                                                 𝒉(𝑡) = 𝒐𝑡 ⊙ tanh(𝑪(𝑡))                                            (19) 

2.3.2  Gate Recurrent Unit (GRU) 

Because back-propagation in LSTM involves a high number of parameters, 
computation times are long. In [13], Cho et al. proposed the GRU, which has 
fewer gates than LSTM, to shorten computation time. Although the design of 
the GRU has been modified, its value is comparable to that of the LSTM. Figure 
7 shows the graphical representation for GRU. Similar to LSTM, GRU uses 
gating units to capture long-term dependencies in order to overcome the 
vanishing and exploding gradient problem. 

 

 
Figure 7. GRU block architecture 

The GRU unit is defined by the below set of equations. In them �̃�𝑡 stands for 
the hidden state candidate. 

                                       𝑹𝑡 = σ(𝑾𝑥𝑟𝒙(𝑡) + 𝑾ℎ𝑟𝒉(𝑡−1) + 𝒃𝑟)                                 (20) 

                                       𝒁𝑡 = σ(𝑾𝑥𝑧𝒙(𝑡) + 𝑾ℎ𝑧𝒉(𝑡−1) + 𝒃𝑧)                                 (21) 

                              �̃�𝑡 = tanh(𝑾𝑥ℎ𝒙(𝑡) + 𝑾ℎℎ(𝑹𝑡 ⊙ 𝒉(𝑡−1)) + 𝒃ℎ)                      (22) 

                                    𝒉(𝑡) = (𝒉(𝑡−1) ⊙ 𝒁𝑡) ⊕ (𝟏 − 𝒁𝑡) ⊙ �̃�𝑡                              (23) 



26 

 

3. Ensemble Learning 

Ensemble algorithms are becoming more and more popular in the field of 
machine learning because of their capacity to improve predictive performance 
and robustness. The ensemble methods that are most frequently used are: 
Random Forests, GBM, Adaptive Boosting (AdaBoost), XGBoost and 
Bootstrap Aggregating (Bagging). This paper will focus on XGBoost’s 
performance. 

Decision trees are machine learning algorithms frequently used for both 
classification and regression problems. They are hierarchical structures that 
present a sequence of decisions based on the features of the input data. Every 
leaf node in the tree indicates the expected result, and every internal node 
represents a decision made in response to a specific feature. Recursively 
dividing the feature space according to the feature that provides the optimal 
split is the process of creating a decision tree. This method generates data 
subsets that are progressively uniform in relation to the target variable. Until a 
stopping condition is satisfied, like reaching a maximum depth or getting 
minimum number of samples in each leaf node, this splitting process keeps 
going. Decision trees are useful for understanding feature importance and 
decision making processes since they are simple to read and show. Decision 
trees also have the ability to independently choose features and find feature 
connections, and they can handle both numerical and categorical data. 

But decision trees can overfit, particularly if they develop too deeply or if 
there are noise in the data. Techniques like pruning, limiting the maximum 
depth of the tree or using ensemble methods like GBM can be used to solve 
this problem. 

3.1 Gradient Boosting 

Boosting algorithms use an iterative process to combine weak learners, 
learners who are slightly better than random, into strong learners [7]. Gradient 
boosting is a boosting-like algorithm for regression problems. Given a training 

dataset D = {𝑥𝑖 , 𝑦𝑖}1
𝑁, the goal of gradient boosting is to find an approximation, 

�̂�(x), of the function 𝐹∗(x), which maps instances x to their output values y, by 
minimizing the expected value of a given loss function, L(y,F(x)) [8]. Gradient 
boosting builds an additive approximation of 𝐹∗(x) as a weighted sum of 
functions: 

                                                𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) +  𝜌𝑚ℎ𝑚(𝑥)                                   (24) 

where 𝜌𝑚 is the weight of the 𝑚𝑡ℎ function, ℎ𝑚(𝑥). These functions are the 
models of the ensemble (e.g. decision trees). The approximation is constructed 
iteratively. First, a constant approximation of 𝐹∗(x) is obtained as: 

                                               𝐹0(𝑥) =  𝑎𝑟𝑔𝑚𝑖𝑛
𝛼

∑ 𝐿(𝑦𝑖 , 𝛼)𝑁
𝑖=1                                  (25) 

Subsequent models are expected to minimize: 
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                         (𝜌𝑚, ℎ𝑚) =  argmin
𝜌,ℎ

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)  +  𝜌ℎ(𝑥𝑖))𝑁
𝑖=1                  (26) 

However, instead of solving the optimization problem directly, each ℎ𝑚 can be 

seen as a greedy step in a gradient descent optimization for 𝐹∗. For that, each 

model ℎ𝑚 is trained on a new dataset D = {𝑥𝑖 , 𝑟 𝑚𝑖}𝑖=1
𝑁  where the                     

pseudo residuals, 𝑟 𝑚𝑖, are calculated by: 

                                              𝑟𝑚𝑖 = [
𝜕𝐿(𝑦𝑖,𝐹(𝑥))

𝜕𝐹(𝑥)
]

𝐹(𝑥)= 𝐹𝑚−1(𝑥)
                                      (27) 

The value of 𝜌𝑚 is subsequently computed by solving a line search optimization 
problem. 

This algorithm may encounter overfitting if the iterative process lack proper 
regularization. In some cases, if the model ℎ𝑚 fits  the pseudo-residuals 
perfectly, the next iteration may generate zero pseudo-reisudals, prematurely 
terminating the process. To regulate the additive nature of gradient boosting, 
various regularization parameters are used. The intuitive way to regularize 
gradient boosting is to apply shrinkage to reduce each gradient decent step: 

                                            𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑣𝜌𝑚ℎ𝑚(𝑥)                                    (28) 

with 𝑣 = (0, 1]. The value of 𝑣 is usually set to 0.1. 

Furthermore, additional regularization can be attained by constraining the 
complexity of trained models. In the case of decision trees, this may involve 
setting limitations on the trees’ depth or the bare minimum of instances needed 
to divide a node. Additionally, another set of parameters that are integrated into 
different versions of gradient boosting include those that provide randomness 
to the base learners, which improves ensemble generalization even more, such 
as random subsampling without replacement.  

3.2 XGBoost 

XGBoost is a highly efficient and scalable implementation of gradient 
boosting. It is widely regarded as one of the most powerful and effective 
machine learning algorithms. One of the key characteristics of XGBoost is its 
ability to handle missing data effectively through robust algorithms. It introduces 
several optimizations, including parallel computing, tree pruning, and 
regularization techniques, to enhance training speed and model performance 
[9]. The loss function used to control the complexity of the trees is: 

                               𝐿 =  ∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)) +  ∑ Ω(ℎ𝑚)𝑀
𝑚=1

𝑁
𝑖=1                               (29) 

                                            Ω(ℎ) =  𝛾𝑇 + 
1

2
𝜆‖𝜔‖2                                       (30) 

where T is the number of leaves of the tree and 𝜔 are the output scores of the 
leaves. Pre-pruning can be achieved by integrating this loss function with the 
split criterion of decision trees. Trees with higher values of 𝛾 are simpler. The 
minimal loss reduction gain required to separate an internal node is determined 
by the value of 𝛾. Also, shrinkage is an extra regularization parameter in 
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XGBoost that reduces the additive expansion’s step size. Lastly, other 
strategies like the depth of the trees, etc., can also be used to limit the 
complexity of the trees. Tree complexity reduction also leads to shorter training 
times and reduced storage space needed for the models. 

3.2.1 XGBoost Parameters Tuning 

The overall parameters have been divided into 3 categories: 

1) General Parameters – define the overall functionality of XGBoost 

• booster – select the type of the model, tree-based or linear model 

• nthread – used for parallel processing, number of available threads 

2) Booster Parameters – tuning the individual booster/ tree at each 
step 

3) Learning Task Parameters – define the optimization objective and 
the metric to be calculated at each step 

• objective – define the loss function to be minimized (for regression it is 
used squarederror, squaredlogerror,logistic, absoluteerror) 

• eval_metric – used for validation data (typical values: root mean square 
error, mean absolute error, negative log-likelihood, multiclass 
classification error rate, area under the curve) 

Booster parameters are shown in Table 1, and algorithm used for fine tuning 
parameters is shown in Fig. 8. 
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Figure 8. An algorithm used for XGBoost Parameters Tuning 
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Table 1: Booster Parameters for XGBoost Parameters Tuning 

Booster 
Parameter 

Description Typical Values 

eta Analogous to GBM learning rate. 0.01-0.2 

min_child_weight The minimum sum of weights of 
observations required in a child. 

Tuned used 
cross-validation 

max_depth The maximum depth of a tree. Used to 
control over-fitting. 

3-10 

max_leaf_nodes The maximum number of terminal 
nodes or leaves in a tree. 

 

gamma Specifies the minimum loss reduction 
required to make a split. 

Tuned 
depending on 
loss function 

subsample Denotes the fraction of observations to 
be random samples for each tree. 

0.5-1 

colsample_by_tree Denotes the fraction of columns to be 
random samples for each tree. 

0.5-1 

lambda L2 regularization term on weights 
(analogous to Ridge regression). 

For reducing 
overfitting 

alpha L1 regularization term on weight 
(analogous to Lasso regression). 

For high 
dimensionality 

4. Results and Discussion 

This paper uses time series dataset to examine how well ensemble 
algorithm XGBoost performs with RNN models [10,11]. The dataset used in this 
research was obtained from the „Wind Power Generation Data – Forecasting“ 
Kaggle dataset [12].  

The input variables utilized for our models include temperature (in degrees 
Fahrenheit) at a height of 2 meters above the surface, relative humidity 
(expressed as a percentage) at the same height, wind speed (in meters per 
second) at both 10 and 100 meters above the surface, wind direction (in 
degrees, ranging from 0 to 360) at both heights, and wind gusts (in meters per 
second) at 100 meters above the surface. Our target output is the turbine 
output, which has been normalized to a range between 0 and 1. 

The five years included in the wind power forecasting dataset are 2017 
through 2021. The training phase used data from the first four years, while the 
fifth year served for testing the models. The implementation used the 
Tensorflow and Keras libraries to build RNN models, as well as the XGBoost 
library to create XGBoost models.  
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Firstly, we identified the best model among various RNN architectures. The 
experiment was performed with Simple RNN, LSTM, and GRU models. 
Additionally, we also explored a few configurations with different numbers of 
layers and epochs. The models were trained with and without dropout layers 
using dropout probabilities (0.2 and 0.3) to evaluate the impact of 
regularization. The dropout layer is a paradigm for regularization technique for 
preventing neural network overfitting by randomly setting a percentage of input 
units to zero during training. This causes the network to learn more robust 
features that are not dependent on individual neurons. The training time for 
each model has been measured. The results for each RNN model are 
presented in Table 2. 

 

Table 2: The results for the various RNN models 

NN 
architecture 

+ 

Number of 
Epochs 

 

Model 

type 

Without 
Regularization 

With Regularization 
(Dropout = 0.2) 

With Regularization 
(Dropout = 0.3) 

MSE 
Training 
Time [s] 

MSE 
Training 
Time [s] 

MSE 
Training 
Time [s] 

1 hidden 
layer with 64 

neurons,        
10 Epochs 

RNN 0.3491 20.89 0.1703 15.93 0.1951 14.98 

LSTM 0.1779 47.01 0.1716 47.78 0.1730 49.43 

GRU 0.1955 40.31 0.1676 29.09 0.1737 35.41 

1 hidden 
layer with 64 

neurons,       
100 Epochs 

RNN 0.1734 182.69 0.1664 186.14 0.1657 181.52 

LSTM 0.1716 260.17 0.1675 222.59 0.1641 223.85 

GRU 0.1774 222.05 0.1686 206.06 0.1701 212.32 

2 hidden 
layers with 

64 neurons,        
10 Epochs 

RNN 0.2013 26.28 0.1994 24.67 0.1762 30.77 

LSTM 0.1823 74.49 0.1693 55.51 0.1706 52.65 

GRU 0.1856 70.99 0.1673 49.49 0.1767 42.42 

2 hidden 
layers with 

64 neurons,        
100 Epochs 

RNN 0.1787 289.09 0.1738 250.47 0.1703 253.28 

LSTM 0.1801 431.623 0.1730 407.57 0.1698 375.02 

GRU 0.1750 391.01 0.1687 361.99 0.1712 337.39 

 

As we can see, the best results in terms of mean squared error 
(MSE=0.1641) was achieved by the LSTM model with one hidden layer of 64 
nodes, trained for 100 epochs. Table 2 also shows that the NN with a dropout 
layer performs better than the one without, as it helps prevent overfitting. 
Furthermore, the training time for GRU models is consistently shorter than that 
for LSTM models, which is understandable given the simpler structure of the 
GRU model compared to the LSTM. 
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In Fig. 9 we can observe the performance of the aforementioned LSTM 
model by comparing predicted with actual values of active power for the year 
2021. 

 

 
Figure 9. The performance of the best RNN (LSTM) model 

 

After that, the authors attempted to find the best XGBoost model using the 
algorithm presented in Fig 8. Grid search was used as the hyperparameter 
tuning technique. In the first iteration, the optimal values for 'max_depth' and 
'min_child_weight' were identified. Following this, the optimal values for 
'subsample' and 'colsample_bytree' were determined, and the learning rate 
parameter 'eta' was subsequently reduced. In the second iteration, the entire 
process was repeated for the new learning rate to find the optimal parameters.  

Additional parameters used in the XGBoost model include the number of 
boosting rounds, which was set to 10,000, 'verbose_eval' set to 50 (indicating 
that a message will be displayed every 50 rounds), and 'early_stopping_rounds' 
set to 50 (indicating that the training process will stop if the objective function 
does not change for 50 consecutive rounds). The entire parameter tuning 
process is represented in Table 3. 

As we can see, parameter tuning resulted in an improvement of approximately 
11%. In Fig. 10, the performance of the best XGBoost model is shown by 
comparing predicted and actual values of active power for the year 2021. 
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Table 3: The parameters tuning process for XGBoost 

XGBoost Mean Squared Error 

Without 
Parameters 

Tuning 
0.1679 

With 
Parameters 

Tuning 

First Iteration MSE 

’max_depth’ in the range of values  (2,12),                        
’min_child_weight’ in the range of values (2,8)  

 

0.1538 

Best results:  

’max_depth’ = 8, ’min_child_weight’ = 7 

’subsample’ in the range of the values (0.7,1), 

’colsample_bytree’ in the range of values 
(0.7,1) 

0.1538 

Best results: 

’subsample’ = 1, ’colsample_bytree’ = 1 

’eta’ in the range of values 
(0.3,0.25,0.2,0.15,0.1,0.05,0.01,0.005) 

0.1514 

Best results: 

’eta’ = 0.05 

Second Iteration MSE 

’max_depth’ in range        (2,12),                        
’min_child_weight’ in range (2,8)  

 

0.1506 

Best results:  

’max_depth’ = 11, ’min_child_weight’ = 7 

’subsample’ in range (0.7,1),       
’colsample_bytree’ in rangee (0.7,1)         

 

0.1496 

Best results: 

’subsample’ = 0.7, ’colsample_bytree’ = 1 
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Figure 10. The performance of the best XGBoost model 

 

Our analysis demonstrated that both models are capable of capturing the 
complex temporal dependencies inherent in wind power generation data. 
However, XGBoost consistently outperformed RNNs, providing slightly better 
predictive accuracy across various performance metrics, including MSE. The 
superior performance of XGBoost can be attributed to its ability to handle non-
linearity, missing data and outliers more effectively, while requiring less 
hyperparameter tuning than RNNs. On the other hand, RNNs, despite their 
potential to model temporal dependencies through recurrent connections, 
showed limitations in convergence speed and sensitivity to training data size 
and sequence length. The findings suggest that for this specific multivariate 
time series forecasting problem, XGBoost is more efficient and reliable 
approach. 

5. Conclusion 

This paper underscores the necessity of analyzing a variety of ML models 
to address the needs of modern power systems expanded with wind farms as 
renewable sources. The applications of wind farms within power systems 
necessitate the comprehensive analysis of multiple types of ML models to 
harness their potential. 

One of the key strategies in power system forecasting, control, and 
management is time series analysis. The choice of model for forecasting can 
significantly impact the accuracy and efficiency of predictions. 

In this paper, the authors compared RNN algorithms with GBM algorithms. 
The results indicate that GBM algorithms with tuned parameters slightly 
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outperform DNN models. This is expected given the limited dataset, which likely 
prevents the DNNs from fully utilizing their ability to learn complex features. 
Nonetheless, the DNN models still perform well, suggesting they could achieve 
better results with larger datasets. 

While RNNs are foundational, LSTMs and GRUs offer more sophisticated 
mechanisms for handling time series data. In addition, XGBoost can be 
powerful when the data is suitably transformed and can capture complex 
patterns that recurrent networks might miss.  

In future work, the authors plan to enhance the prediction models using 
state-of-the-art algorithms for multivariate time series, such as transformers. 
They also aim to apply these models to real-world systems and optimize their 
performance. 
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Kratak sadržaj: Važan korak ka održivoj budućnosti je uključivanje 
obnovljivih izvora energije u elektroenergetsku mrežu. Energija vetra je 
značajna zbog svoje široke dostupnosti i minimalnog uticaja na životnu 
sredinu. U radu je prikazana komparativna analiza rekurentnih algoritama 
neuronske mreže i mašina za povećanje gradijenta primenjenih na 
podatke vremenske serije za regresivne procene aktivne snage koju 
generiše vetropark. Algoritmi sa pojačanjem gradijenta kombinuju 
prednosti nekoliko modela mašinskog učenja (stabla odlučivanja, 
nasumične šume, itd.) da bi proizveli moćan model predviđanja. Pored 
konvencionalnih rekurentnih neuronskih mreža, članak se bavi 
dugotrajnom kratkoročnom memorijom i taktovanom rekurentnom 
neuralnom jedinicom kao najsavremenijim modelima za analizu 
vremenskih serija i predviđanja. Sveobuhvatna analiza je sprovedena na 
velikom skupu podataka o proizvodnji energije iz vetroelektrana. 

Ključne reči: Mašinsko učenje, rekurentna neuronska mreža, dugotrajna 
kratkoročna memorija, zatvorena ponavljajuća jedinica, mašine za 
povećanje gradijenta, XGBoost, vetropark, proizvodnja energije. 

Komparativna analiza dubokih neuronskih 

mreža i algoritama sa pojačanjem gradijenta u 

dugoročnom predviđanju snage vetra 
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