

Review Paper

UDC: 351.754:004.8(510)

DOI: 10.5937/zrffp55-62297

ARTIFICIAL INTELLIGENCE AS A POPULATION SURVEILLANCE TOOL: THE CASE OF CHINA

Vanja N. GLIŠIN¹

Institute for Political Studies
Belgrade (Serbia)

Srđan M. MILAŠINOVIC²

University of Criminal Investigation and Police Studies
Belgrade (Serbia)

Boriša N. LEČIĆ³

Faculty of Law and Business Studies “Dr. Lazar Vrkatić”
Novi Sad (Serbia)

¹ vanja.glisin@ips.ac.rs; <https://orcid.org/0000-0002-7747-6205>

² srdjan.milasinovic@kpu.edu.rs; <https://orcid.org/0000-0002-8251-339X>

³ borisalecic@gmail.com; <https://orcid.org/0000-0002-6565-6399>

Received: October 17, 2025
Accepted: December 10, 2025

ARTIFICIAL INTELLIGENCE AS A POPULATION SURVEILLANCE TOOL: THE CASE OF CHINA

Keywords: artificial intelligence; surveillance; population; security; China.

Abstract. The development of artificial intelligence (AI) has brought transformative changes to multiple segments of state and society, establishing new trends in governance and adaptation to global processes in the emerging digital era. AI-based systems are widely applied for surveillance purposes and are increasingly present across the world—from video monitoring, biometric scanning, and facial recognition to algorithmic data processing and predictive analytics, which inform decisions made by security institutions. For years, China has emphasized the integration of AI into various systems through its strategic documents, including surveillance networks, in which it has emerged as a global leader. China thus represents a paradigmatic case for analyzing the use of AI as a tool for population surveillance, as it actively develops and deploys some of the most advanced monitoring systems—a process that became especially visible during the COVID-19 pandemic. Examining this issue from the perspective of the social sciences and humanities is methodologically justified, as the application of AI in population surveillance extends beyond technical and technological aspects to encompass political, security, sociological, and other implications. Through a qualitative analysis of available literature and official documents on AI development, this paper first identifies and defines the key concepts and, in its second part, applies methods of analysis, synthesis, and contextual examination to address the central research question through the case of China.

Introduction

Artificial intelligence (AI) is becoming a key factor in the development of contemporary states and societies, influencing international relations and shaping standards in the fields of science, education, technology, industry, economy, the military-industrial complex, culture, and the media. The global race in AI development is currently led by China and the United States, followed by Russia, the United Kingdom, Israel, Japan, South Korea, and Canada. Although in most countries AI is primarily applied in the domains of science, education, industry, and the economy, this paper focuses on AI as an instrument of population surveillance.

In this context, the term *population surveillance* refers to the combination of biometric monitoring, algorithmic decision-making, and digital data integration aimed at regulating and shaping social behavior. China provides a particularly relevant case for analyzing the complex processes involved in the use of AI as a tool for population surveillance, as it possesses the most extensive and technologically advanced surveillance infrastructure in the world. Studying this phenomenon contributes to a deeper understanding of the challenges confronting the global community in an era of pervasive digital control.

The paper relies on a qualitative analysis of available scholarly literature and official documents concerning the role of AI in China's surveillance system. It employs descriptive, explanatory, and synthesis methods. Descriptive analysis is applied in the section that presents China's strategic documents and the development of AI, while the synthesis method integrates findings from relevant academic sources, policy documents, and available empirical data in order to formulate conclusions about the application of AI in population surveillance. Contextual analysis is also used to elucidate the social and political circumstances in which advanced technologies are implemented. The aim of this paper is to examine phenomena and processes that have been insufficiently addressed within the social sciences and humanities and to contribute to the ongoing academic discussion on the use of AI in population surveillance. Through a qualitative examination of relevant literature and official sources, the study seeks to synthesize recent research related to the topic.

The Development and Definition of Artificial Intelligence

The term *artificial intelligence* was first used by the American mathematician and computer scientist John McCarthy at a conference held at Dartmouth College in the United States in 1956. McCarthy defined AI as “the science and engineering of making intelligent machines, especially intelligent computer programs. It is related to the similar task of using computers to understand human intelligence, but AI does not have to confine itself to methods that are biologically observable” (McCarthy, 2007). The conference marked a milestone in the advancement of AI projects and programs, and by 1959, McCarthy had already developed the LISP programming language, which became widely used in AI programming.

AI development requires a multidisciplinary approach, which explains the diversity of explanations and interpretations found in the literature, depending on the research field (Russell & Norvig, 2010; Scherer, 2016). This diversity often leads to conceptual difficulties, which is understandable given that AI represents “an imitation or simulation of something that we ourselves do not yet fully understand: human intelligence” (Sheikh et al., 2023, p. 16). If we consider that some authors classify AI as systems that think like humans, the reasons behind the conceptual challenges become clearer (Haugeland, 1985).

The High-Level Expert Group on Artificial Intelligence (AI HLEG) defines AI as “systems that exhibit intelligent behavior by analyzing their environment and taking actions—with a certain degree of autonomy—to achieve specific goals” (AI HLEG, 2019). For a more precise understanding, McKendrick (2019, p. 6) provides a comprehensive definition:

“Artificial Intelligence technologies aim to reproduce or surpass abilities (in computational systems) that would require ‘intelligence’ if humans were to perform them. These include: learning and adaptation; sensory understanding and interaction; reasoning and planning; optimisation of procedures and parameters; autonomy; creativity; and extracting knowledge and predictions from large, diverse digital data.”

Contemporary definitions of AI highlight the system’s capacity for learning and adaptation (Shalev-Shwartz & Ben-David, 2014), with the goal of creating “a learning system structure that will represent a self-learning system,” eliminating the need for humans to manually supply data strings (Деспотовић & Глишин, 2024; Радун, 2025). The term *machine learning* thus refers to machines that can learn without direct human input or programming (Smola & Vishwanathan, 2008). Consequently, “the main functions of AI are: learning, planning, reasoning, decision-making and problem-solving” (Prlja et al., 2021, p. 66).

AI can be classified according to various criteria. The literature commonly distinguishes between weak and strong AI. Weak AI refers to tools designed

for specific problem-solving tasks, whereas strong AI denotes a computer programmed in such a way that it is not “just a model of the brain, but the brain itself” (Prlja et al., 2021, p. 63). Another classification criterion concerns the domain of application, resulting in three categories: (1) specialized AI—designed for specific tasks only in certain areas; (2) general AI—designed as a general intelligence applicable across multiple fields (e.g., economy, business, education, medicine, military industry); and (3) superintelligence (Kaplan & Haenlein, 2018; Wang & Siau, 2019). A more detailed typology is offered by Alex Bekker, who divides AI into five types: “(1) interactive AI (e.g., personal assistants such as Siri, Cortana, and Alexa); (2) functional AI (robots); (3) analytical AI (data analysis, machine learning); (4) textual AI (text recognition, speech-to-text conversion); and (5) visual AI (augmented reality technology)” (Bekker, 2019, May 13).

Artificial Intelligence as a Tool for Population Surveillance

In contemporary societies, AI has become an increasingly prevalent instrument of surveillance, enabling the rapid and efficient processing of large volumes of data, the identification of individuals and objects, real-time alerts for operators, and the prediction of potentially risky behaviors (Mucci, 2024, August 12; Schweyer, 2018). Modern surveillance systems integrate high-resolution cameras, sensors, and algorithms capable of facial recognition, motion detection, and behavioral analysis, assessing whether a person is violating the law or endangering the environment. As a result, AI can automatically identify suspicious events, reduce false alarms, facilitate faster decision-making, and enhance the effectiveness of security services. Furthermore, AI systems are capable of performing predictive analytics, enabling the prevention of criminal, terrorist, and other related activities (Ma, 2022, November 3). Unlike older surveillance systems, AI-based technologies can process vast amounts of data and monitor or respond to nearly all situations within the surveillance system’s range in real time. In the case of street surveillance cameras, AI allows for more efficient crowd monitoring and behavioral assessment.

According to research published in the journal *Nature* in 2025, more than half of global computer-vision projects are focused on surveillance and security applications, indicating an increasingly strong link between technological advancement and control mechanisms in public spaces (Kalluri et al., 2025, pp. 73–79). The phenomenon of surveillance itself has long been analyzed—from Jeremy Bentham’s concept of the *panopticon* in the 18th century to Michel Foucault’s studies of supervision and punishment in the 20th century (Bentam, 2014; Фуко, 1997). Considering that the *panopticon* is not strictly related to institutions such as prisons but rather to a mechanism of control or a spatial projection of power

aimed at establishing and maintaining discipline, it may be concluded that this concept is also applicable to modern societies (Bentham, 2014; Фуко, 1997). Therefore, the essence lies in control, discipline, and obedience.

This theoretical framework can thus be applied in the contemporary understanding of digital surveillance, in which traditional institutional frameworks (e.g., prisons) are replaced by algorithms and databases. In her extensive study, *The Age of Surveillance Capitalism*, Shoshana Zuboff (Zubof, 2020, pp. 18–19) argues that the monitoring and management of human behavior give rise to what she terms *instrumentarian power*—a form of influence designed to shape individual actions in service of external interests. George Orwell's book *1984* (1949) also anticipates the rise of population control through technological means, foreshadowing systems of pervasive surveillance with the potential to extend across global societies (Orvel, 2006).

More recent research has introduced the term *surveillance society*, defined by David Lyon (2002) as a social order in which everyday life and interactions are continuously monitored, leading to control and new forms of social governance that shape citizens' behavior. The term *digital authoritarianism* denotes the systematic use of technologies, particularly AI, for political and social control (Lucaccini, 2024), while *algorithmic governance* refers to processes in which algorithms make or influence decisions that affect citizens' lives, often imperceptibly and without their explicit consent (Peeters & Schuilenburg, 2023). Closely related is the concept of *algorithmic governmentality*, which Antoinette Rouvroy defines as a “regime of power” (Rouvroy, 2013, p. 8; Rouvroy, 2020, March 27). This concept builds upon Michel Foucault's theoretical framework, particularly his influential text “Governmentality,” published in the volume *The Foucault Effect* (1991). In this work, Foucault conceptualizes *governmentality* as the “conduct of conducts,” a form of activity aiming to shape, guide or affect the conduct of some person or persons” (Gordon, 1991, p. 2).

China's Population Surveillance System

China has developed the most technologically advanced population surveillance system in the world, representing a paradigmatic case study for several reasons. First, the state systematically collects data on its citizens in cooperation with major domestic technology companies such as Baidu, Alibaba, Tencent, and Xiaomi—collectively known as BATX, which in China occupy a position comparable to that of Google, Apple, Meta, and Amazon in the Western world (Ollier-Malaterre, 2024). Second, the collection of vast amounts of data is facilitated by the growing use of cashless transactions through applications such as Alipay (Alibaba) and WeChat Pay (Tencent) (Torre & Xu, 2020). Citizens use these digital payment systems for nearly all aspects of daily life, including bill

payments, supermarket purchases, bicycle rentals, public transportation, and taxi services, as well as for checking and managing accounts on online platforms—all of which leave extensive digital traces (Zubof, 2020). Third, social media platforms such as Weibo and social networks like TikTok reflect users' habits and everyday activities. People also exchange text, audio, and video messages through the WeChat application, which has in recent years largely taken over the role of e-mail in business communication (Ollier-Malaterre, 2024). Fourth, China has the world's highest ratio of closed-circuit television (CCTV) cameras to population—approximately one camera for every twelve people. Chinese companies such as Hikvision, Megvii, and SenseTime manufacture advanced facial-recognition cameras, an area in which China has become the global leader (Miracula, 2019, June 3; Ollier-Malaterre, 2024). Fifth, China's rapid progress in the field of AI supports the construction and maintenance of large-scale information systems architectures and the analysis of massive datasets (Ollier-Malaterre, 2024). Sixth, as Professor Rogier Creemers (2018) observes, Chinese authorities—unlike those in Western liberal democracies—do not conceal their intention to monitor and control citizens' behavior but instead pursue these goals openly (Creemers, 2018).

For more than a decade, China has placed particular emphasis on the development of AI in its strategic policy documents. The *New Generation Artificial Intelligence Development Plan*, issued by the State Council of China on July 20, 2017, outlines the country's long-term vision for integrating AI into all sectors of the state and society, including security structures and population surveillance systems (Webster et al., 2017, August 1). As a result, the country has witnessed the accelerated development of smart cameras capable of facial recognition, as well as algorithms designed to process and analyze vast amounts of data, including biometric information and data from the health, financial, and communication sectors (Woods, 2025). China's complex surveillance infrastructure became especially evident during the COVID-19 pandemic, when advanced AI technologies were employed for population monitoring and movement control (Деспотовић & Глишин, 2024; Nagy & Bostik, 2024).

The 2017 strategic document emphasizes the pivotal role of AI in strengthening national security and global competitiveness, with the ultimate objective of establishing China as a major global center of AI innovation by 2030 (State Council of China, 2017; Webster et al., 2017, August 1). In this document, AI is identified as a technology of national strategic importance, defined as “a strategic technology that will lead the way in the future” (State Council of China, 2017; Webster et al., 2017, August 1; Wu et al., 2020). Accordingly, China outlined three strategic goals and corresponding timelines for their implementation.

The first strategic goal, projected to 2020, focused on aligning the country's AI technologies and applications with the global level of advancement. It emphasized the development of an AI industry capable of competing in the global

market (State Council of China, 2017). The second goal, set for completion by 2025, envisaged the establishment of a new generation of AI theories and technological systems with autonomous learning capabilities, with the core AI industry budget expected to exceed 400 billion yuan (State Council of China, 2017). The third goal, targeted for 2030, projected China's emergence as a leading global innovation center in the field of AI, developing its own theoretical foundations, technologies, and practical applications (State Council of China, 2017). The economic impact of AI was estimated to reach 10 trillion yuan, or approximately 1.38 trillion USD, by 2030 (State Council of China, 2017; Webster et al., 2017, August 1).

The fulfillment of these strategic goals has been accompanied by a rapid increase in the number of AI-related companies, which, according to the Chinese Yicai Media Group, reached 1.09 million registered entities by 2023 (Zhang & Khanal, 2024, p. 22). This growth reflects China's consistent approach to AI development and its dual focus on both civilian and military applications. Since 2017, numerous policy initiatives have been undertaken to integrate AI technologies into national science and technology frameworks, including the *Three-Year Action Plan to Promote AI (2018–2021)*, the *AI Innovation Action Plan for Institutions of Higher Education* (Zhang & Khanal, 2024), and the establishment of state funds supporting AI development across various sectors (Anonymous, 2019, October 29; Zhu et al., 2023, September 5).

In 2023, Chinese President Xi Jinping announced the *Global Artificial Intelligence Governance Initiative*, aiming to advance his vision of human progress and equal opportunities for all nations in AI development (Đinping, 2023). The Initiative highlights the issues of security and global cooperation, although scholarly discussions also point to challenges concerning data privacy, digital sovereignty, and technological dependence on Chinese systems (Стекић, 2025, p. 79). Data privacy, in particular, has become an increasingly debated topic, as AI enables the large-scale surveillance, collection, and analysis of data. Given China's leading position in AI technologies for surveillance and data management, many countries have expressed concern about the implications of "global digital transformation and the expansion of Chinese technologies such as 5G and AI" (Стекић, 2025, p. 79).

The global expansion of Chinese technologies—most notably through initiatives such as the *Belt and Road Initiative*—has raised fears that it may endanger the digital sovereignty of other states, compromise data networks, and create technological dependencies. Consequently, several countries, including the United States, the United Kingdom, Canada, Australia, New Zealand, Sweden, and the Netherlands, have restricted and/or banned the use of Chinese equipment (e.g., 5G infrastructure, Huawei/ZTE devices, surveillance cameras, biometric systems) (Government of Canada, 2022, May 19; Government of UK, 2020, July 14; European Commission, 2023, June 15; Jackson, 2023, February 8; Stafford Powell & Tovar, 2019, October 14).

These restrictions and sanctions appear to have further motivated China to strengthen its technological and human capacities, notably through increased investments in education. As a result, China has “become a global leader in the number of research papers and patents” in the field of AI (Стекин, 2025, p. 83). In May 2025, China issued a significant policy document, the *White Paper on National Security*, which outlines a comprehensive approach to national security in the new era, encompassing military, political, economic, technological, cultural, and cyber dimensions. The guiding principle of China’s global strategic posture is rooted in a holistic approach to security. “It is one that takes the people’s security as its ultimate goal, political security as the fundamental task, and national interests as the guiding principle” (Huaxia, 2025, May 12). The document is part of a broader series of strategic initiatives aimed at achieving China’s national rejuvenation by 2049.

China has introduced the *China Social Credit System* (also referred to as *China’s Ranking System*) as a mechanism designed to incentivize citizens to engage in so-called desirable behaviors, thereby fostering trust within Chinese society (Creemers, 2018; Donnelly, 2024, February 11). The system integrates AI-based technologies, including facial recognition, tracking, surveillance, and the analysis of large datasets, to evaluate individual behavior. Citizens are assigned scores based on information such as financial status, personal activities, and general conduct, which in turn affect access to financial services, employment opportunities, unrestricted travel, and contractual agreements (Creemers, 2018; Donnelly, 2024, February 11).

In this way, political and social control is exercised through models of desirable or undesirable behavior, inevitably leading to limitations on human rights and freedoms (Qiang, 2019). Numerous scholars have critically examined the rise of mass surveillance, emphasizing that AI research underpins the design, development, and implementation of modern surveillance, which in turn generate concerns regarding privacy violations, restrictions on freedoms of expression, deepening social inequalities, and conditions that facilitate potential abuse of power (Browne, 2015; Creemers, 2018; Monahan & Murakami Wood, 2018; Zubof, 2020). As Foucault argued, technologies that “enable the monitoring of human data are sufficient to foster conditions of fear and self-censorship, where this access serves as a key means of social control” (Фуко, 1997; Kalluri et al., 2025). Some scholars suggest that the Chinese surveillance society has evolved from a “Panoptic model” to a “Panspectric model”, in which “information is now actively generated by multiple sensors scattered across the lives of its subjects” (Creemers, 2016, p. 96; Creemers, 2018).

When examining specific components of China’s surveillance system, the extensive network of installed cameras across both urban and rural areas must be highlighted. In addition to recording activities, many of these devices are equipped with modules for facial recognition, behavior analysis, and

object identification. Prominent companies in this domain include Hikvision and Dahua. Hikvision, headquartered in China (Hangzhou Hikvision Digital Technology Co., Ltd.), is the world's largest supplier of surveillance equipment (Ollier-Malaterre, 2024). According to the company's official website, its technologies support "five major programs from China's Party-state: 1. Large-scale event security for public security; 2. Sharp Eyes information platform for grassroots governance; 3. Situational analysis of traffic operations; 4. Smart law enforcement system of the cloud-based network; 5. Smart scenic spots" (Trevaskes & Bernot, 2023, p. 330). Among these, the Sharp Eyes program stands out as one of China's largest surveillance initiatives, initially introduced to maintain public order and peace in rural areas before expanding into urban regions. The program integrates public and private cameras, frequently equipped with sensors for facial, vehicle, and license plate recognition (Ollier-Malaterre, 2024; Trevaskes & Bernot, 2023). As Trevaskes and Bernot (2023, p. 330) note, the "Sharp Eyes Information Platform for Grassroots Governance is by far the most penetrative and ambitious in terms of its ability to make information and movement of individuals transparent to the Party-state."

In China, smaller companies involved in surveillance systems also play a significant role, guided by the ideological framework of the Communist Party and Xi Jinping's vision of a peaceful and prosperous nation. Beijing Zhengtong Technology Company Co., Ltd., for instance, develops social management technologies and an information platform for smart city governance (Ollier-Malaterre, 2024; Trevaskes & Bernot, 2023). Notably, the company aligns its operations with the political imperatives of the government, as articulated in the following passage:

"The Decision of the Fourth Plenary Session of the 19th Central Committee of the Communist Party of China [in 2019] put forward the strategic goal of 'building a new pattern of grassroots social governance' and the action goal of 'accelerating the modernization of urban social governance', marking a new stage of urban social governance. 'Modernization of urban social governance' contains within itself the due connotation of relating to [the Party goals of] the modernization of the national governance system and governance capacity, and it is an important foundation for the new promotion and development of national governance efficiency." (Trevaskes & Bernot, 2023, p. 332)

According to Chinese companies engaged in surveillance, the modernization of social governance aims to integrate various surveillance and management systems, establish mechanisms for data collection and analysis, predict events, and address social contradictions (Ollier-Malaterre, 2024; Trevaskes & Bernot, 2023). Consequently, "the overall goal is to 'construct' a particular society in which harmony and stability are the overriding characteristics of social relations" (Creemers, 2018; Trevaskes & Bernot, 2023, p. 334). Chinese authorities

have recognized the necessity of extending the scope of population surveillance to regulate social relations and ensure harmony and stability by monitoring and responding to behavioral irregularities (Ollier-Malaterre, 2024; Trevaskes & Bernot, 2023).

Biometric identification constitutes another key component of China's surveillance system, encompassing technologies such as facial recognition, finger-printing, retinal scanning, and movement analysis. With the introduction of the regulation *Measures for the Security Management of Facial Recognition*, effective from June 1, 2025, China established specific rules to regulate data collection and usage while aiming to protect individual privacy (Zhang, 2025, June 16). Another important element is the Grid system, which divides territories into micro-units for targeted surveillance. This system is particularly prevalent in regions assessed by Chinese authorities as posing potential security risks, such as Xinjiang, where the Uyghur Muslim population is perceived to have separatist tendencies (OHCHR, 2022, August 31). The overarching purpose of real-time automated surveillance is to construct "an all-encompassing system penetrating, controlling and shaping society" (Liang et al., 2018, p. 420).

The progressive adoption of digital AI technologies for population surveillance demonstrates a clear intent to extend social control into both public and private spheres. Advanced surveillance systems enable the state to observe, monitor, analyze, and regulate citizens' daily activities in increasingly granular detail, resulting in what has been described as the escalation of surveillance (Chen & Zhan, 2025). Chen and Zhan further note that, despite the deep integration of these systems into everyday life, various forms of resistance are emerging within China, with academic and civil society organizations seeking to initiate debates on privacy rights and the ethical use of data (Chen & Zhan, 2025). Ethical and legal considerations regarding the deployment of AI in population surveillance are central to contemporary global debates. Key concerns include the potential for manipulation and mass monitoring of citizens. In response, an increasing number of countries advocate for the principle of "ethical AI," which emphasizes algorithmic transparency, privacy protection, and mandatory human oversight of machine-generated decisions (Bostrom & Yudkowsky, 2014).

Conclusion

The use of artificial intelligence as a tool for population surveillance in contemporary societies illustrates the profound interconnection between technological development and political power. Technological advancement is thus not merely a matter of innovation but also constitutes a new form of social organization and governance. This paper highlights that AI represents a pivotal shift in understanding modern surveillance systems, as it renders control both

invisible—integrated into the new normal—and simultaneously omnipresent and comprehensive.

Through strategic documents, China has institutionalized the development of AI as a central instrument of national power for more than a decade. This approach has strengthened both its international technological standing and the internal political structure, while also raising ethical and security concerns at the global level. A systematic strategy has facilitated the construction of the most sophisticated system of digital control, concurrently challenging the boundaries of privacy, autonomy, and human rights. China exemplifies how algorithmic decision-making, biometric surveillance, and centralized data collection have become embedded in the institutional and security architecture of the state, reshaping the relationship between citizens and governing authorities. The Chinese model demonstrates that AI development is not a neutral technological process but is imbued with political, normative, and value-laden dimensions. Consequently, analyzing the Chinese case is essential for understanding global transformations in which technology functions as a critical instrument of political influence.

The social credit system, the Sharp Eyes network, biometric databases, and the integration of state and private digital platforms collectively illustrate the consolidation of digital authoritarianism and the transition from a panoptic to a pансpетric model of surveillance. This aligns with Rouvroy's and Foucault's concept of *algorithmic governability*—a form of governance based on prediction and behavior management rather than classical forms of repression.

More broadly, the Chinese case suggests that, in the coming decades, the implementation of AI will become a central site of tension between the concept of digital sovereignty and universal values such as freedom and privacy. Therefore, examining AI from the perspective of the social sciences and humanities is of paramount importance, as it facilitates understanding of how technology operates as a tool for social shaping, political control, and the redefinition of human identity in the digital age.

References

Agrawal, V. (2022). Demystifying the Chinese social credit system: A case study on AI-powered control systems in China. *Proceedings of the AAAI Conference on Artificial Intelligence*, 36(11), 13124–13125. <https://doi.org/10.1609/aaai.v36i11.21698>

Anonymous. (2019, October 29). China to funnel \$29 billion towards its chip ambitions. *Bloomberg News*. <https://www.bloomberg.com/news/articles/2019-10-29/china-to-funnel-29-billion-towards-its-chip-ambitions>

Bekker, A. (2019, May 13). 5 types of AI to propel your business. *Science Soft: Artificial Intelligence*. <https://www.scnsoft.com/blog/artificial-intelligence-types>

Bentam, Dž. (2014). *Panoptikon ili nadzorna zgrada*. Novi Sad: Meditarran Publishing.

Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. In: K. Frankish & W. M. Ramsey (Eds.), *Artificial Intelligence* (pp. 316–334). Cambridge: Cambridge University Press.

Browne, S. (2015). *Dark Matters: On the Surveillance of Blackness*. Durham: Duke University Press.

Creemers, R. (2016). Cyber China: Upgrading propaganda, public opinion work and social management for the twenty-first century. *Journal of Contemporary China*, 26(103), 85–100. <https://doi.org/10.1080/10670564.2016.1206281>

Creemers, R. (2018). China's social credit system: An evolving practice of control. SSRN. <https://doi.org/10.2139/ssrn.3175792>

Chen, D., & Zhan, J. V. (2025). When does surveillance trigger resistance? Public response to escalating digital control in China. *Journal of China Political Sciences*, 30(2). <https://doi.org/10.1007/s11366-025-09918-5>

Donnelly, D. (2024, February 11). China social credit system explained—What is it & How does it work?. *Horizons*. <https://joinhorizons.com/china-social-credit-system-explained/>

Dinping, S. (2023). *Izgradnja zajedničke budućnosti čovečanstva*. Beograd: Albatros Plus.

European Commission. (2023, June 15). *Commission Announces Next Steps on Cybersecurity of 5G Networks in Complement to Latest Progress Report by Member States*. Brussels: European Commission. https://ec.europa.eu/commission/presscorner/detail/en/ip_23_3309

Gordon, C. (1991). Governmental rationality: An introduction. In: G. Burchell, C. Gordon, & P. Miller (Eds.), *The Foucault Effect* (pp. 1–52). Chicago: The University of Chicago Press.

Government of Canada. (2022, May 19). *Policy Statement—Securing Canada's Telecommunications System*. Government of Canada. <https://www.canada.ca/en/innovation-science-economic-development/news/2022/05/policy-statement--securing-canadas-telecommunications-system.html>

Government of UK. (2020, July 14). *Huawei to Be Removed from UK 5G Networks by 2027*. Gov. UK. <https://www.gov.uk/government/news/huawei-to-be-removed-from-uk-5g-networks-by-2027>

Haugeland, J. (1985). *Artificial Intelligence: The Very Idea*. Cambridge, MA: MIT Press.

High-Level Expert Group on Artificial Intelligence (AI HLEG). (2019). *A Definition of AI: Main Capabilities and Scientific Disciplines*. Brussels: European Commission. https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=56341

Jackson, L. (2023, February 8). Australia to remove Chinese-made security cameras from national war memorial—reports. *Reuters*. <https://www.reuters.com/world/asia-pacific/australia-remove-chinese-made-security-cameras-national-war-memorial-reports-2023-02-08/>

Kalluri, P. R., Agnew, W., Cheng, M., Owens, K., Soldaini, L., & Birhane, A. (2025). Computer-vision research powers surveillance technology. *Nature*, 643, 73–79. <https://doi.org/10.1038/s41586-025-08972-6>

Kaplan, A., & Haenlein, M. (2018). Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. *Business Horizons*, 62(1), 15–25. <https://doi.org/10.1016/j.bushor.2018.08.004>

Liang, F., Das, V., Kostyuk, N., & Hussain, M. M. (2018). Constructing a data-driven society: China's social credit system as a state surveillance infrastructure. *Policy & Internet*, 10(4), 415–543. <https://doi.org/10.1002/poi3.183>

Lucaccini, M. (2024). *Geopolitical Dynamics of Digital Authoritarianism: Emerging Global Challenges*. SOG Working Paper No. 6/2024. Rome: Luiss School of Government.

Lyon, D. (2002). *Surveillance Society: Monitoring Everyday Life*. Buckingham: Open University Press.

Ma, C. (2022, November 3). Behaviour analytics in surveillance systems through machine learning. *Medium*. <https://medium.com/@chenyi.clairema/behaviour-analytics-in-surveillance-systems-through-machine-learning-f16b807b04b8>

McCarthy, J. (2007). *What Is AI? / Basic Questions*. Stanford University. <http://jmc.stanford.edu/artificial-intelligence/what-is-ai/index.html>

McKendrick, K. (2019). *Artificial Intelligence Prediction and Counterterrorism*. London: Chatham House. <https://www.chathamhouse.org/sites/default/files/2019-08-07-AICounterterrorism.pdf>

Miracula, S. (2019, June 3). *How China Uses A.I. to Control Society*. Rome: Italian Institute for International Political Studies (ISPI). <https://www.ispionline.it/en/publication/how-china-uses-artificial-intelligence-control-society-23244>

Monahan, T., & Murakami Wood, D. (Eds.). (2018). *Surveillance Studies: A Reader*. Oxford: Oxford University Press.

Mucci, T. (2024, August 12). What is predictive AI? IBM. <https://www.ibm.com/think/topics/predictive-ai>

Murray Li, T. (2007). Governmentality. *Anthropologica*, 49, 275–294.

OHCHR. (2022, August 31). *Assessment of Human Rights Concerns in the Xinjiang Uyghur Autonomous Region, People's Republic of China*. New York: United Nations Office of the High Commissioner for Human Rights. <https://www.ohchr.org/en/documents/country-reports/assessment-human-rights-concerns-xinjiang-uyghur-autonomous-region-peoples>

Ollier-Malaterre, A. (2024). *Living with Digital Surveillance in China: Citizens' Narratives on Technology, Privacy and Governance*. London: Routledge. <https://doi.org/10.4324/9781003403876>

Orvel, Dž. (2006). 1984. Beograd: Čigoja štampa.

Peeters, R., & Schuilenburg, M. (2023). Algorithmic governance: Technology, knowledge and power. In: W. Housley, A. Edwards, R. Beneito-Montagut, & R. Fitzgerald (Eds.), *The SAGE Handbook of Digital Society* (pp. 439–457). London: SAGE Publications Ltd. <https://doi.org/10.4135/9781529783193>

Stafford Powell, A. J., & Tovar, A. (2019, October 14). US Government adds 28 Chinese entities associated with human rights violations and abuses. *Sanction News*. <https://sanctionsnews.bakermckenzie.com/us-government-adds-28-chinese-entities-associated-with-human-rights-violations-and-abuses/>

Prlić, D., Gasmi, G. i Korać, V. (2021). *Veštačka inteligencija u pravnom sistemu EU*. Beograd: Institut za uporedno pravo.

Qiang, X. (2019). The road to digital unfreedom: President Xi's surveillance state. *Journal of Democracy*, 30(1), 53–67. <https://www.journalofdemocracy.org/articles/the-road-to-digital-unfreedom-president-xis-surveillance-state/>

Rouvroy, A. (2013). The end(s) of critique: Data-behaviourism vs. due-process. In: M. Hildebrandt & K. de Vries (Eds.), *Privacy, Due Process and the Computational Turn: The Philosophy of Law Meets the Philosophy of Technology* (pp. 143–168). London: Routledge.

Rouvroy, A. (2020, March 27). Algorithmic governmentality and the death of politics. *Green European Journal*. <https://www.greeneuropeanjournal.eu/algorithmic-governmentality-and-the-death-of-politics/>

Russell, S., & Norvig, P. (2010). *Artificial Intelligence: A Modern Approach*. 3rd edition. New Jersey: Prentice-Hall.

Scherer, M. (2016). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. *Harvard Journal of Law & Technology*, 29(2), 354–398. <https://jolt.law.harvard.edu/articles/pdf/v29/29HarvJLTech353.pdf>

Schweyer, A. (2018). *Predictive Analytics and Artificial Intelligence in People Management*. St. Louis, MO: Incentive Research Foundation.

Shalev-Shwartz, S., & Ben-David, S. (2014). *Understanding Machine Learning: From Theory to Algorithms*. Cambridge: Cambridge University Press.

Sheikh, H., Prins, C., & Schrijvers, E. (2023). *Mission AI: The New System Technology*. London: Springer.

Smola, A., & Vishwanathan, S. V. N. (2008). *Introduction to Machine Learning*. Cambridge: Cambridge University Press.

State Council of China. (2017, July 20). *Notice of the State Council on Printing and Distributing the Development Plan for the New Generation of Artificial Intelligence*. Guo Fa, No. 35. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm

Pop Stefanija, A., & Pierson, J. (2023). Algorithmic governmentality, digital sovereignty, and agency affordances: Extending the possible fields of action. *Wizenbaum Journal of Digital Society*, 3(2), 1–30. <https://doi.org/10.34669/WI.WJDS/3.2.2>

Torre, D., & Xu, Q. (2020). Digital payments in China: Adoption and interactions among applications. *Revue d'économie industrielle*, 172(4), 55–82. <https://doi.org/10.4000/rei.9471>

Trevaskes, S., & Bernot, A. (2023). Surveillance infrastructure in China: Key concepts and mechanisms enhancing the Party-state's governance ambitions. *Global Media and China*, 8(3), 327–342. <https://doi.org/10.1177/20594364231171013>

Wang, W., & Siau, K. L. (2019). Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: A review and research agenda. *Journal of Database Management*, 30(1), 61–79. <https://doi.org/10.4018/JDM.2019010104>

Webster, G., Creemers, R., Kania, E., & Triolo, P. (2017, August 1). *Full Translation: China's "New Generation Artificial Intelligence Development Plan"*. Stanford University: DigiChina. <https://digichina.stanford.edu/work/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/>

Woods, D. (2025). AI as a tool for surveillance: China's concave trilemma. *Journal of Chinese Political Science*. <https://doi.org/10.1007/s11366-025-09907-8>

Huaxia (Ed.). (2025, May 12). China releases white paper on national security. *Xinhua*. <https://english.news.cn/20250512/173c90c9cff94a46bfcadad03a5df9bc/c.html>

Zhang, H., & Khanal, S. (2024). To win the great AI race, China turns to Southeast Asia. *Asia Policy*, 19(1), 21–34. <https://dx.doi.org/10.1353/asp.2024.a918871>

Zhang, L. (2025, June 16). China: Facial recognition measures take effect. *Library of Congress: Global Legal Monitor*. <https://www.loc.gov/collections/global-legal-monitor/>

Zhu, J., Huang, K., Mo, Y., & Liu, R. (2023, September 5). Exclusive: China to launch \$40 billion state fund to boost chip industry. *Reuters*. <https://www.reuters.com/technology/china-launch-new-40-bln-state-fund-boost-chip-industry-sources-say-2023-09-05/>

Zubof, Š. (2020). *Doba nadzornog kapitalizma*. Beograd: Clio.

Деспотовић, Љ. и Глишин, В. (2024). *Геополитика и кријатојолијика*. Београд: Catena Mundi.

Радун, В. Т. (2025). *На ютију ка трансчовеку*. Београд: Пешић и синови.

Стекић, Н. (2025). Глобално управљање у доба дигиталних ризика: кинеска иницијатива за вештачку интелигенцију. *Социолошки преглед*, LIX (1), 76–100. <https://doi.org/10.5937/socpreg59-56738>

Фуко, М. (1997). *Надзирајши и кажњавајши: рођење затвора*. Београд: Просвета.

Вања Н. ГЛИШИН

Институт за политичке студије
Београд (Србија)

Срђан М. МИЛАШИНОВИЋ

Криминалистичко-полицијски универзитет
Београд (Србија)

Бориша Н. ЛЕЧИЋ

Факултет за правне и пословне студије „Др Лазар Вркатић“
Нови Сад (Србија)

Вештачка интелигенција као инструмент надзора становништва: случај Кине

Резиме

Развој вештачке интелигенције (ВИ) условљава промене у свим сегментима државе и друштва, постављајући нове трендове функционисања и прилагођавања глобалним процесима у настајућој дигиталној ери. Системи засновани на ВИ све се интензивније користе у надзорне сврхе широм света – од видео надзора, биометријског скенирања и препознавања лица, до алгоритамске обраде података и предиктивне анализе, на основу које се доносе одлуке о даљем поступању безбедносних структура.

Кина већ годинама у својим стратешким документима предвиђа интеграцију ВИ у различите системе, укључујући и системе надзора, у чему је постала

глобални лидер. Сматрамо да Кина представља парадигматичан пример за анализу употребе ВИ као инструмента надзора становништва, будући да активно развија и примењује најсавременије системе надзора, што је посебно било видљиво током пандемије ковид 19.

Истраживање ове теме из перспективе друштвено-хуманистичких наука оправдано је с обзиром на то да употреба ВИ у надзору становништва не подразумева само техничко-технолошке аспекте, већ и политичке, безбедносне, социолошке и друге димензије. Квалитативном анализом доступне литературе и званичних докумената о развоју ВИ, у првом делу рада се издавају и дефинишу основни појмови, док се у другом делу рада применом метода анализе, синтезе и контекстуалне интерпретације нуде одговори на истраживачко питање кроз студију случаја Кине.

Кључне речи: вештачка интелигенција; надзор; становништво; безбедност; Кина.

Овај чланак је објављен и дистрибуира се под лиценцом *Creative Commons ауторство-некомерцијално 4.0 међународна* (CC BY-NC 4.0 | <https://creativecommons.org/licenses/by-nc/4.0/>).

This paper is published and distributed under the terms and conditions of the *Creative Commons Attribution-NonCommercial 4.0 International license* (CC BY-NC 4.0 | <https://creativecommons.org/licenses/by-nc/4.0/>).