Hyperglycemia on admission-related mortality in patients with severe traumatic brain injury: A systematic review and meta-analysis
Abstract
Hyperglycemia is believed to cause detrimental effects. It is related with poor clinical outcomes and higher mortality in patients with severe traumatic brain injury (TBI). This study aimed to investigate whether hyperglycemia on admission may be a significant predictor of mortality in patients with severe TBI. The study was performed using meta-analysis. Studies were searched throughout PubMed, Cochrane, NCBI, and Google Scholar from 2010 to 2020. The study subjects were patients with TBI, proven to have hyperglycemia on admission (random blood sugar evaluation >200 mg/dl on arrival at the emergency department), with or without a history of diabetes mellitus (HbA1C evaluation ≥6.5%), a Glasgow Coma Scale score ≤8, and aged 0–100 years. The pooled risk ratio (RR) for mortality in severe TBI with hyperglycemia on admission was 2.39. The evidence of mortality appeared significantly higher in patients with TBI with hyperglycemia on admission than in those with normal blood glucose levels (RR = 2.39, p < 0.00001). The pooled RR had wide heterogeneity (I2 = 0.87), so the random-effect model was used. Hyperglycemia on admission is often related with poor clinical outcomes and higher mortality.
References
2.Salim A, Hadjizacharia P, Dubose J, Brown C, Inaba K, Chan LS, et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am Surg. 2009;75:25-29.
3.American College of Surgeons. Committee on Trauma. Advanced Trauma Life Support : Student Course Manual. Chicago, IL: American College of Surgeons; 2018.
4.Marshall LF. Head injury: recent past, present, and future. Neurosurgery. 2000;47:546-561. doi: 10.1097/00006123-200009000-00002
5.Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol. 2017;16:1224-1238. doi: 10.2174/1570159X15666170613083606
6.Shi J, Dong B, Mao Y, Guan W, Cao J, Zhu R, et al. Review: traumatic brain injury and hyperglycemia, a potentially modifiable risk factor. Oncotarget. 2016;7:71052-71061. doi: 10.18632/oncotarget.11958
7.Pentelényi T, Kammerer L, Péter F, Fekete M, Koranyi L, Stützel M, et al. Prognostic significance of the changes in the carbohydrate metabolism in severe head injury. Acta Neurochir Suppl. 1979;28:103-107. doi: 10.1007/978-3-7091-4088-8_23
8.Pentelenyi T, Kammerer L, Stützel M, Balazsi I. Alterations of the basal serum insulin and blood glucose in brain-injured patients. Injury. 1979;10:201-208. doi: 10.1016/0020-1383(79)90009-3
9.King LR, Knowles Jr HC, McLaurin RL, Lewis HP. Glucose tolerance and plasma insulin in cranial trauma. Ann Surg. 1971;173:337. doi: 10.1097/00000658-197103000-00003
10.Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1-9. doi: 10.1186/2046-4053-4-1
11.Melo JRT, Di Rocco F, Blanot S, Laurent-Vannier A, Reis RC, Baugnon T, et al. Acute hyperglycemia is a reliable outcome predictor in children with severe traumatic brain injury. Acta Neurochir. 2010;152:1559-1565. doi: 10.1007/s00701-010-0680-z
12.Smith RL, Lin JC, Adelson PD, Kochanek PM, Fink EL, Wisniewski S, et al. Relationship between hyperglycemia and outcome in children with severe traumatic brain injury. Pediatr Crit Care Med. 2012;13(1):85-91. doi: 10.1097/PCC.0b013e3182192c30
13.Chong S-L, Harjanto S, Testoni D, Ng ZM, Low CYD, Lee KP, et al. Early hyperglycemia in pediatric traumatic brain injury predicts for mortality, prolonged duration of mechanical ventilation, and intensive care stay. Int J Endocrinol. 2015;2015:1-0. doi: 10.1155/2015/719476
14.Bosarge PL, Shoultz TH, Griffin RL, Kerby JD. Stress-induced hyperglycemia is associated with higher mortality in severe traumatic brain injury. J Trauma Acute Care Surg. 2015;79:289-294. doi: 10.1097/TA.0000000000000716
15.Ley EJ, Srour MK, Clond MA, Barnajian M, Tillou A, Mirocha J, et al. Diabetic patients with traumatic brain injury: insulin deficiency is associated with increased mortality. J Trauma Acute Care Surg. 2011;70:1141-1144. doi: 10.1097/TA.0b013e3182146d66
16.Shi J, Dong B, Mao Y, Guan W, Cao J, Zhu R, et al. Review: Traumatic brain injury and hyperglycemia, a potentially modifiable risk factor. Oncotarget. 2016;7:71052-71061. doi: 10.18632/oncotarget.11958
17.Kerby JD, Griffin RL, MacLennan P, Rue LW 3rd. Stress-induced hyperglycemia, not diabetic hyperglycemia, is associated with higher mortality in trauma. Ann Surg. 2012;256:446-452. doi: 10.1097/SLA.0b013e3182654549
18.Weaver LC, Bao F, Dekaban GA, Hryciw T, Shultz SR, Cain DP, et al. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Exp Neurol. 2015;271:409-422. doi: 10.1016/j.expneurol.2015.07.003
19.Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes. 2002;51:1319-1336. doi:
10.2337/diabetes.51.5.1319
20.Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep. 2013;65:1655-1662. doi: 10.1016/s1734-1140(13)71527-5
21.Dufour S, Lebon V, Shulman GI, Petersen KF. Regulation of net hepatic glycogenolysis and gluconeogenesis by epinephrine in humans. Am J Physiol Endocrinol Metab. 2009;297:E231-E235. doi: 10.1152/ajpendo.00222.2009
22.Kulp GA, Herndon DN, Lee JO, Suman OE, Jeschke MG. Extent and magnitude of catecholamine surge in pediatric burned patients. Shock. 2010;33:369-374. doi: 10.1097/SHK.0b013e3181b92340
23.Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 2001;15:533-551. doi: 10.1053/beem.2001.0168
24.Srinivasan V. Stress hyperglycemia in pediatric critical illness: the intensive care unit adds to the stress!. J Diabetes Sci Technol. 2012;6:37-47. doi: 10.1177/193229681200600106
25.Liou DZ, Singer MB, Barmparas G, Harada MY, Mirocha J, Bukur M, et al. Insulin-dependent diabetes and serious trauma. Eur J Trauma Emerg Surg. 2016;42(4):491-496. doi: 10.1007/s00068-015-0561-5
26.Jeremitsky E, Omert LA, Dunham CM, Wilberger J, Rodriguez A. The impact of hyperglycemia on patients with severe brain injury. J Trauma Acute Care Surg. 2005;58:47-50. doi: 10.1097/01.ta.0000135158.42242.b1
27.Bavisetty S, Bavisetty S, McArthur DL, Dusick JR, Wang C, Cohan P, et al. Chronic hypopituitarism after traumatic brain injury: risk assessment and relationship to outcome. Neurosurgery. 2008;62:1080-1094. doi: 10.1227/01.neu.0000325870.60129.6a
28.Sorensen L, Siddall PJ, Trenell MI, Yue DK. Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy. Diabetes Care. 2008;31:980-981. doi: 10.2337/dc07-2088
29.Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, DeKosky ST. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem. 1993;61:2015-2024. doi: 10.1111/j.1471-4159.1993.tb07437.x
30.Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998;89:507-518. doi: 10.3171/jns.1998.89.4.0507
31.Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001;69:369-381. doi: 10.1016/s0024-3205(01)01142-0
32.Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 1957;58:193-201. doi: 10.1001/archopht.1957.00940010205006
33.Rovegno M, Soto PA, Sáez JC, von Bernhardi R. Biological mechanisms involved in the spread of traumatic brain damage. Med Intensiva. 2012;36:37-44. doi: 10.1016/j.medin.2011.06.008
34.Wieloch T, Nikolich K. Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol. 2006;16:258-264. doi: 10.1016/j.conb.2006.05.011
35.Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26:1191-1201. doi: 10.1016/j.bbi.2012.06.008
36.Pytel P, Alexander JJ. Pathogenesis of septic encephalopathy. Curr Opin Neurol. 2009;22:283-287. doi: 10.1097/WCO.0b013e32832b3101
37.Diringer MN, Scalfani MT, Zazulia AR, Videen TO, Dhar R, Powers WJ. Effect of mannitol on cerebral blood volume in patients with head injury. Neurosurgery. 2012;70:1215-1218. doi: 10.1227/NEU.0b013e3182417bc2
38.Chesnut RM. Care of central nervous system injuries. Surg Clin North Am. 2007;87:119-156. doi: 10.1016/j.suc.2006.09.018
39.Alluri H, Wiggins-Dohlvik K, Davis ML, Huang JH, Tharakan B. Blood-brain barrier dysfunction following traumatic brain injury. Metab Brain Dis. 2015;30:1093-1104. doi: 10.1007/s11011-015-9651-7
40.Nov O, Kohl A, Lewis EC, Bashan N, Dvir I, Ben-Shlomo S, et al. Interleukin-1β may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology. 2010;151:4247-4256. doi: 10.1210/en.2010-0340
41.Yendamuri S, Fulda GJ, Tinkoff GH. Admission hyperglycemia as a prognostic indicator in trauma. J Trauma. 2003;55:33-38. doi: 10.1097/01.TA.0000074434.39928.72
42.Laird AM, Miller PR, Kilgo PD, Meredith JW, Chang MC. Relationship of early hyperglycemia to mortality in trauma patients. J Trauma. 2004;56:1058-1062. doi: 10.1097/01.ta.0000123267.39011.9f
43.Sung J, Bochicchio GV, Joshi M, Bochicchio K, Tracy K, Scalea TM. Admission hyperglycemia is predictive of outcome in critically ill trauma patients. J Trauma. 2005;59:80-83. doi: 10.1097/01.ta.0000171452.96585.84
44.Losser M-R, Damoisel C, Payen D. Bench-to-bedside review: glucose and stress conditions in the intensive care unit. Crit Care. 2010;14:1-12. doi: 10.1186/cc9100
45.Malfitano C. Impact of conditioning hyperglycemic on myocardial infarction rats: Cardiac cell survival factors. World J Cardiol. 2014;6:449-454. doi: 10.4330/wjc.v6.i6.449
46.Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response!. Crit Care. 2013;17:1-7. doi: 10.1186/cc12514
47.Heyland DK, MacDonald S, Keefe L, Drover JW. Total parenteral nutrition in the critically ill patient: a meta-analysis. JAMA. 1998;280:2013-2019. doi: 10.1001/jama.280.23.2013
48.der Voort PH, Feenstra RA, Bakker AJ, Heide L, Boerma EC, van der Horst IC. Intravenous glucose intake independently related to intensive care unit and hospital mortality: an argument for glucose toxicity in critically ill patients. Clin Endocrinol (Oxf). 2006;64:141-145. doi: 10.1111/j.1365-2265.2006.02437.x
49.Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506-517. doi: 10.1056/NEJMoa1102662
50.Peppa M, Raptis SA. Glycoxidation and wound healing in diabetes: an interesting relationship. Curr Diabetes Rev. 2011;7(6):416Y425. doi: 10.2174/157339911797579188
51.Hill J, Zhao J, Dash PK. High blood glucose does not adversely affect outcome in moderately brain-injured rodents. J Neurotrauma. 2010;27:1439-1448. doi: 10.1089/neu.2010.1328
52.Krinsley JS, Meyfroidt G, van den Berghe G, Egi M, Bellomo R. The impact of premorbid diabetic status on the relationship between the three domains of glycemic control and mortality in critically ill patients. Curr Opin Clin Nutr Metab Care. 2012;15:151-160. doi: 10.1097/MCO.0b013e32834f0009
53.Longstreth Jr WT, Inui TS. High blood glucose level on hospital admission and poor neurological recovery after cardiac arrest. Ann Neurol. 1984;15:59-63. doi: 10.1002/ana.410150111
54.Pulsinelli WA, Levy DE, Sigsbee B, Scherer P, Plum F. Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med. 1983;74:540-544. doi: 10.1016/0002-9343(83)91007-0
