OVERVIEW OF THE POSSIBILITY OF BONE REPLACEMENT FOR THE PURPOSE OF PRE-PROSTHETIC PREPARATION OF THE PATIENT

  • Marko Igić Univerzitet u Nišu, Medicinski fakultet, Stomatološka protetika
  • Milena Kostić
  • Ana Pejčić
  • Nikola Gligorijević
  • Marija Jovanović

Abstract


Loss of the jaw bone, especially in the area of the alveolar process, can significantly complicate the procedure of prosthetic rehabilitation of prosthetic patients. The reason for the loss of the jaw bones are physiological and pathological processes. Bone replacements are widely used in the reconstruction of bone defects. The optimal characteristics of these materials are biocompatibility, bioinertness, biofunctionality and a special canalicular and intercanalicular system. Alloplastic bone replacements are inorganic, synthetic, biocompatible and bioactive bone replacements with osteoinductive potential. Hydroxyapatite is a preparation based on calcium phosphate. It has high biocompatibility, low immunogenicity and good osteoconductive characteristics. Poor properties are poor mechanical resistance as well as a low degree of resorption. Therefore, the research of chemically modified hydroxyapatites containing different ions was started. Calcium ions can be replaced by various metal ions like cobalt, aluminum, nickel, manganese, chromium, copper in a liquid medium.

References


  1. Mark Farmer , Mark Farmer.  Ridge dimensional changes following single‐tooth extraction in the aesthetic zone Clinical Oral Implants Research, 2014; 25: 272-277

  2. Hansson S, Halldin A. Alveolar ridge resorption after tooth extraction: A consequence of a fundamental principle of bone physiology. J Dent Biomech. 2012;3:1758736012456543. doi:10.1177/1758736012456543

  3. Majzoub JRavida AStarch-Jensen TTattan MSuárez-López Del Amo F. The Influence of Different Grafting Materials on Alveolar Ridge Preservation: a Systematic Review. J Oral Maxillofac Res. 2019;10(3):e6.

  4. Moy PK. Clinical experience with osseous site development using autogenous bone, bone graft substitutes and membrane barriers. Oral Maxillofac Surg Clin North Am 2001;13:493–509

  5. Mertens C, Decker C, Seeberger R, Hoffmann J, Sander A, Freier K. Early bone resorption after vertical bone augmentation- a comparison of calvarial and iliac grafts. Clin Oral Impl Res 2013;24:820–5. 

  6. I Cenzi R, Arduin L, Zollino I, Casadio C, Scarano A, Carinci F. Alveolar ridge augmentation with calvaria, iliac crest and mandibular autologous bone grafts: a retrospective study on 261 implants. J Stomat Occ Med 2010;3:89–94

  7. Robert Cerović, Mirna Juretić, Margita Belušić Gobić, Mate Rogić The use of extraoral autologous bone graft in alveolar ridge augmentation. medicina fluminensis 2014, Vol. 50, No. 2, p. 176-180

  8. Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomaterialia. 2010; 6(6):1882-94.

  9. Verardi SLombardi TStacchi C .Clinical and Radiographic Evaluation of Nanohydroxyapatite Powder in Combination with Polylactic Acid/Polyglycolic Acid Copolymer as Bone Replacement Graft in the Surgical Treatment of Intrabony Periodontal Defects: A Retrospective Case Series Study. Materials (Basel). 2020 Jan 7;13(2). pii: E269

  10. Misono M, Hall WK. Oxidation-reduction properties of copper- and nickel-substituted hydroxyapatites. J Phys Chem 1973; 77(6):791-800.

  11. Wakamura M, Kandori K, Ishikawa T. Surface structure and composition of calcium hydroxyapatites substituted with al(III), la(III) and fe(III) ions. Colloids Surf Physicochem Eng Aspects. 2000; 164(2-3):297-305.

  12. Armulik A, Svineng G, Wennerberg K, Fässler R, Johansson S. Expression of integrin subunit β1B in integrin β1-deficient GD25 cells does not interfere with αVβ3 functions. Exp Cell Res. 2000; 254(1):55-63.

  13. Pabbruwe MB, Standard OC, Sorrell CC, Howlett CR. Bone formation within alumina tubes: Effect of calcium, manganese, and chromium dopants. Biomaterials. 2004; 25(20):4901-10.

  14. Medvecký L, Štulajterová R, Parilák L, Trpčevská J, Ďurišin J, Barinov SM. Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloids Surf Physicochem Eng Aspects . 2006;281(1-3):221-9.

  15. Li Y, TeckNam C, PingOoi C. Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: Characterization and cytotoxicity analysis. Journal of Physics: Conference Series. 2009; 187

  16. Bigi A, Bracci B, Cuisinier F, Elkaim R, Fini M, Mayer I, Mihailescu IN, Socol G, Sturba L, Torricelli P. Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials. 2005; 26(15):2381-9.

  17. Paluszkiewicz C, Ślósarczyk A, Pijocha D, Sitarz M, Bućko M, Zima A, Chróścicka A, Lewandowska-Szumieł M. Synthesis, structural properties and thermal stability of mn-doped hydroxyapatite. J Mol Struct. 2010; 976(1-3):301-9.

  18. Suchanek W, Yashima M, Kakihana M, Yoshimura M. Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: Mechanical properties and microstructural evolution. J Am Ceram Soc. 1997; 80(11):2805-13.

  19. Tran N, Webster TJ. Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomaterialia. 2011; 7(3):1298-306.

  20. De Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos Jr. ES, De Sena LA, Rossi AM, Granjeiro JM. Understanding the impact of divalent cation substitution on hydroxyapatite: An in vitro multiparametric study on biocompatibility. Journal of Biomedical Materials Research - Part A. 2011; 98 A(3):351-8.

  21. Li Y, Ho J, Ooi CP. Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles. Materials Science and Engineering C. 2010; 30(8):1137-44.

Published
2025/12/09
Section
Pregledni rad / Review article