The EFFECT OF ROBOTIC-ASSISTED GAIT TRAINING AS ADJUNCT TO TRADITIONAL THERAPY ON MOTOR IMPAIRMENTS IN CHILDREN WITH CEREBRAL PALSY

  • Dragana Đurić Fatima College of Health Sciences
  • Snezana Ilic Faculty of Special Education and Rehabilitation, Belgrade, Serbia
Keywords: robotic-assisted gait training, cerebral palsy, motor impairments, children

Abstract


Aims. The aim of the study was to assess the effectiveness of robotic-assisted gait training (Lokomat) as an adjunct to traditional physiotherapy in improving range of motion and muscle strength and decreasing spasticity in children with cerebral palsy.

Materials and Methods. Twenty-six participants, mean 7.69 years, levels I-IV on Gross Motor Classification System with a bilateral and unilateral form of cerebral palsy went under intensive 20 Lokomat and 20 traditional physiotherapy sessions, each training session lasting 40 minutes.

Results. There was a positive effect of Lokomat training and traditional therapy on the range of motion (hip- flexion, extension, abduction; knee- extension; ankle- dorsiflexion, and plantar flexion), reduction of spasticity in 7.7 % – 26.9 % of participants, and muscle strength in 30.8% – 80 % of participants, depending on the side of the lower limb and muscles. The most significant improvement was in the range of knee extension and ankle dorsiflexion. Quadriceps increased muscle strength in 68%-80 % of the participants. Spasticity level was decreased by 26.9 % in adductors, hamstrings, and gastrocnemius.

Conclusion. Lokomat training is an adjunct to conventional physiotherapy treatment, having limited but not negligible effect on the increase in the range of motion and muscle strength of the lower limb and reducing spasticity overall in cerebral palsy children.

 

Author Biography

Snezana Ilic, Faculty of Special Education and Rehabilitation, Belgrade, Serbia

Associate Professor

References


  1. Oskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509-519.


 https://doi.org/10.1111/dmcn.12080



  1. World Health Organization International classification of function, disability, and health. 2001. World Health Organization.


https://apps.who.int/iris/bitstream/handle/10665/42407/9241545429.pdf;jsessionid=534935F940A2D136F296C43D7C614870?sequence=1


 



  1. Wichers M, Hilberink S, Roebroeck ME, van Nieuwenhuizen O, Stam HJ. Motor impairments and activity limitations in children with spastic cerebral palsy: a Dutch population-based study. J Rehabil Med. 2009;41(5):367-74.


https://doi.10.2340/16501977-0339



  1. Ostensjø S, Carlberg EB, Vøllestad NK. Motor impairments in young children with cerebral palsy: relationship to gross motor function and everyday activities. Dev Med Child Neurol. 2004;46(9):580-9.


https:// doi.10.1017/s0012162204000994



  1. Papageorgiou E, Simon-Martinez C, Molenaers G, Ortibus E, Van Campenhout A, Desloovere K. Are spasticity, weakness, selectivity, and passive range of motion related to gait deviations in children with spastic cerebral palsy? A statistical parametric mapping study. PLoS One. 2019 11;14(10):e0223363.


https://doi.org/10.1371/journal.pone.0223363



  1. Borggraefe I, Kiwull L, Schaefer JS, Koerte I, Blaschek A, Meyer-Heim A, Heinen F. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med. 2010;46(2):125-31.


https://doi.org/10.5167/uzh-40098



  1. Lefmann S, Russo R, Hillier S. The effectiveness of robotic-assisted gait training for pediatric gait disorders: a systematic review. J Neuroeng Rehabil. 2017 5;14(1):1.


https://doi.org/10.1186/s12984-016-0214-x



  1. Meyer-Heim A, Van Hedel H. J. A. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation.; Seminars in Pediatric Neurology. 2013; 20 (2),139–145.


https://doi.org/10.1016/j.spen.2013.06.006



  1. Winchester P, Querry R. Robotic orthoses for body weight-supported treadmill training. Phys Med Rehabil Clin N Am. 2006;17(1):159-72.


https://europepmc.org/article/med/16517349



  1. Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, Berwick S, Heinen F, Meyer-Heim A. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14(6):496-502.


  https://doi.org/10.1016/j.ejpn.2010.01.002



  1. Aurich-Schuler T, Warken B, Graser JV, Ulrich T, Borggraefe I, Heinen F, Meyer-Heim A, van Hedel HJ, Schroeder AS. Practical Recommendations for Robot-Assisted Treadmill Therapy (Lokomat) in Children with Cerebral Palsy: Indications, Goal Setting, and Clinical Implementation within the WHO-ICF Framework. Neuropediatrics. 2015;46(4):248-60.


https://doi.org/10.1055/s-0035-1550150



  1. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206-7.


 https://doi.org/10.1093/ptj/67.2.206



  1. Hanssen B, Peeters N, Vandekerckhove I, De Beukelaer N, Bar-On L, Molenaers G, Van Campenhout A, Degelaen M, Van den Broeck C, Calders P, Desloovere K. The Contribution of Decreased Muscle Size to Muscle Weakness in Children with Spastic Cerebral Palsy. Front Neurol. 2021; 26;12:692582.


https://doi.org/10.3389/fneur.2021.692582



  1. Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10(4):407-15.


https://doi:10.1016/0197-2456(89)90005-6



  1. Guzik A, Drużbicki M, Wolan-Nieroda A, Turolla A, Kiper P. Estimating Minimal Clinically Important Differences for Knee Range of Motion after Stroke. J Clin Med. 2020;9(10):3305.


https://doi:10.3390/jcm9103305



  1. Guzik A, Drużbicki M, Perenc L, Wolan-Nieroda A, Turolla A, Kiper P. Establishing the Minimal Clinically Important Differences for Sagittal Hip Range of Motion in Chronic Stroke Patients. Front Neurol. 2021; 12:700190.


https://doi:10.3389/fneur.2021.700190



  1. van Gelder L, Booth ATC, van de Port I, Buizer AI, Harlaar J, van der Krogt MM. Real-time feedback to improve gait in children with cerebral palsy. Gait Posture. 2017; 52:76-82.


https://doi.org/10.1016/j.gaitpost.2016.11.021



  1. Cloodt E, Wagner P, Lauge-Pedersen H, Rodby-Bousquet E. Knee and foot contracture occur earliest in children with cerebral palsy: a longitudinal analysis of 2,693 children. Acta Orthop. 2021 ;92(2):222-227.


https://doi.org/10.1080/17453674.2020.1848154



  1. Pantzar-Castilla EHS, Wretenberg P, Riad J. Knee flexion contracture impacts functional mobility in children with cerebral palsy with various degree of involvement: a cross-sectional register study of 2,838 individuals. Acta Orthop. 2021;92(4):472-478.


https://doi.org/10.1080/17453674.2021.1912941



  1. Lindén O, Hägglund G, Rodby-Bousquet E, Wagner P. The development of spasticity with age in 4,162 children with cerebral palsy: a register-based prospective cohort study. Acta Orthop. 2019; 90(3):286-291.


https://doi:10.1080/17453674.2019.1590769



  1. Fosdahl MA, Jahnsen R, Pripp AH, Holm I. Change in popliteal angle and hamstrings spasticity during childhood in ambulant children with spastic bilateral cerebral palsy. A register-based cohort study. BMC Pediatr. 2020;20(1):11.


https://doi.org/10.1186/s12887-019-1891-y



  1. Ross S. A, Engsberg, J. R. Relation between spasticity and strength in individuals with spastic diplegic cerebral palsy. Developmental medicine and child neurology, 2002; 44(3), 148–157.


https://doi.org/10.1017/s0012162201001852



  1. Ghiasi, M. R. Hadian, H. Bagheri, M. S. Yekaninejad, H. Saberi, and A. Noroozi Change of Spasticity Following Robotic-Assisted Gait Training in Patients with Chronic Incomplete Spinal Cord Injury: Preliminary Results 2012; 4:1: 53-57.


https://doi.org/10.1166/ajnn.2012.1041



  1. Fang CY, Tsai JL, Li GS, Lien AS, Chang YJ. Effects of Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Meta-analysis. Biomed Res Int. 2020;2102785.


https://doi:10.1155/2020/2102785



  1. Gil-Castillo J, Barria P, Aguilar Cárdenas R, Baleta Abarza K, Andrade Gallardo A, Biskupovic Mancilla A, Azorín JM, Moreno JC. A Robot-Assisted Therapy to Increase Muscle Strength in Hemiplegic Gait Rehabilitation. Front Neurorobot. 2022;16:837494. https://org/10.3389/fnbot.2022.83749

  2. Collado-Garrido L, Parás-Bravo P, Calvo-Martín P, Santibáñez-Margüello M. Impact of Resistance Therapy on Motor Function in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2019;16(22):4513.


 https://doi:10.3390/ijerph16224513

Published
2025/12/09
Section
Originalni rad / Original article