Antimicrobial activity of chlorhexidine and cerium oxide nanoparticles composition

Cerium nanoparticles enhance chlorhexidine activity

Keywords: Periodontitis, Nanoparticles, Gingivitis, Antiseptics, Oral cavity

Abstract


Antiseptics are nonspecific antimicrobial drugs that are used widely in dentistry. The "gold standard" in periodontology is chlorhexidine digluconate (CHG). Widespread usage of CHG-containing products for daily care in medicine and dentistry and other fields, leads to acquiring resistance to CHG in microorganisms.

Macro method of serial dilution was used for the determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) on clinical strains of S. mutans and S. epidermidis, obtained from the patients with associated with dental plaque gingivitis and museum strains of E. coli ATCC25922 and C. albicans ATCC10231 were used as inoculum.

The MIC and MBC of the CHG, nanoparticles of cerium oxide (CeNPs) and the solution of the CeNPs and CHG were tested. CeNPs itself has a weak inhibitory and bactericidal effect on microorganisms. The composition of CHG and CeNPs, had significantly higher MIC and MBC for clinical cultures S. mutans and S. epidermidis  and museum strains of E. coli ATCC25922 and C. albicans ATCC10231 compared with CHG alone.

This method significantly enhance antimicrobial activity of chlorhexidine digluconate against clinical and museum strains of microorganism and gives new therapeutic properties for the composition.

References

Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017; 22;3:17038.


2.         Skrypnyk M, Petrushanko T, Kryvoruchko T, Neporada K. Condıtıons of the oral cavıty status ın youth wıth alımentary-constıtutıonal form of obesıty. Med and Ecol probl. 2019; 12;23(1–2):17–21. doi: 10.31718/mep.2019.23.1-2.04


3.         Skrypnyk M, Petrushanko T, Neporada K, et al. Dependence of the dental status of young individuals with different body weights on their eating behavior. Acta fac medic Naissensis. 2022;39(3). doi:10.5937/afmnai39-35901.


4.         Theilade E. The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol. 1986;13(10):905–11.


5.         Lovegrove JM. Dental plaque revisited: bacteria associated with periodontal disease. J N Z Soc Periodontol. 2004;(87):7–21.


6.         Skrypnyk M, Petrushanko T, Neporada K, et al. Colonization resistance of oral mucosa in individuals with diverse body mass index. Journal of Stomatology. 2022;75(3):171-175. doi:10.5114/jos.2022.119168.


7.         Kampf G. Acquired resistance to chlorhexidine - is it time to establish an ‘antiseptic stewardship’ initiative? J Hosp Infect. 2016;94(3):213–27.


8.         Jennings MC, Forman ME, Duggan SM, et al. Efflux Pumps Might Not Be the Major Drivers of QAC Resistance in Methicillin-Resistant Staphylococcus aureus. Chembiochem. 2017; 17;18(16):1573–7.


9.         Carroll KC, Pfaller MA, Landry ML, et al. Manual of clinical microbiology. Volume 2. 12th edition. Washington, DC: ASM Press; 2019. 1431 p.


10.       Chan AKY, Tamrakar M, Jiang CM, Lo ECM, Leung KCM, Chu CH. A Systematic Review on Caries Status of Older Adults. Int J Environ Res Public Health. 2021; 12;18(20):10662.


11.       Kostyrenko OP, Vynnyk NI, Koptev MM, et al. Dental crown bıomıneralızatıon durıng ıts hıstogenesıs. Wiad Lek. 2020;73(12):2612–6.


12.       Kostyrenko OP, Vynnyk NI, Koptev MM, et al. Mıneralızatıon of teeth enamel after eruptıon. Wiad Lek. 2021;74(6):1297–301.


13.       Forman ME, Fletcher MH, Jennings MC, et all. Structure-Resistance Relationships: Interrogating Antiseptic Resistance in Bacteria with Multicationic Quaternary Ammonium Dyes. ChemMedChem. 2016;11(9):958–62.


14.       Yildirim A, Metzler P, Lübbers HT, Yildirim V. Chlorhexidine – history, mechanism and risks. Swiss Dent J. 2015;125(7–8):830–1.


15.       Eriksson P, Tal AA, Skallberg A, et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci Rep. 2018 3;8(1):6999.


16.       Dahle J, Arai Y. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles. IJERPH. 2015; 23;12(2):1253–78.


17.       Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 2005; 113(7):823–39.


18.       Nemmar A, Yuvaraju P, Beegam S, Fahim MA, Ali BH. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice. Oxid Med Cell Longev. 2017;2017:9639035.


19.       Beregova TV, Neporada KS, Skrypnyk M, et al. Efficacy of nanoceria for periodontal tissues alteration in glutamate-induced obese rats—multidisciplinary considerations for personalized dentistry and prevention. EPMA Journal. 2017;8(1):43–9. doi:10.1007/s13167-017-0085-7.


20.       Skrypnyk M. Effectiveness of nanocrystalline cerium dioxide for secondary prevention of inflammatory periodontal diseases in young individuals with obesity. Lett Appl NanoBioSci. 2019; 30;8(4):754–61. doi:10.33263/LIANBS84.754761


21.       Kuang Y, He X, Zhang Z, et al. Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotechnol. 2011; 11(5):4103–8.


22.       Sobek JM, Talburt DE. Effects of the rare earth cerium on Escherichia coli. J Bacteriol. 1968; 95(1):47–51.


23.       Babenko LP, Zholobak NM, Shcherbakov AB, et all. Antibacterial activity of cerium colloids against opportunistic microorganisms in vitro. Mikrobiol Z. 2012; 74(3):54–62.


24.       Lal P, Sharma D, Pruthi P, Pruthi V. Exopolysaccharide analysis of biofilm-forming Candida albicans. J Appl Microbiol. 2010; 109(1):128–36.


25.       Chigurupati S, Mughal MR, Okun E, et al. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials. 2013; 34(9):2194–201.


26.       Hendry ER, Worthington T, Conway BR, et all. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother. 2009; 64(6):1219–25.


27.       Al-Obaidy SSM, Greenway GM, Paunov VN. Enhanced Antimicrobial Action of Chlorhexidine Loaded in Shellac Nanoparticles with Cationic Surface Functionality. Pharmaceutics. 2021; 2;13(9):1389.


28.       Barreras US, Méndez FT, Martínez REM, et all. Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2016; 1;58:1182–7. 

Published
2025/12/19
Section
Originalni rad / Original article