Possible health benefits of polyphenols in neurological disorders associated with COVID-19

Possible health benefits of polyphenols in neurological disorders associated with COVID-19

  • Johnson. Oladele Kings university
Ključne reči: Neuropathology; COVID-19; Polyphenols; SARS-CoV-2; Kolaviron; Apigenin; Quercetin

Sažetak


Novel Coronavirus disease 2019 (COVID-19) represents an emergent global health burden that challenged health system worldwide. Since its sudden upsurge in 2019, many COVID-19 patients have exhibited neurological symptoms and complications. Till now, there is no known effective established drug against the highly contagious COVID-19 infection despite the frightening associated mortality rate. This article aims to present the mechanism of action of coronavirus-2 (SARS-CoV-2), the clinical neurological manifestations displayed by COVID-19 patients, and present polyphenols with neuroprotective ability that can offer beneficial effects against COVID-19 mediated neuropathology. Reports from COVID-19 clinical studies, case reports, and other related literature were evaluated for this review.  Neurological complications of COVID-19 include anosmia, acute cerebrovascular disease, acute disseminated post-infectiousencephalomyelitis, encephalitis, etc. Also, SARS-CoV-2 соuld be a neurotropic vіruѕ due to its iѕоlаtіоn from сеrеbrоѕріnаl fluіd. Multірlе nеurоlоgісаl dаmаgе displayed by COVID-19 patients might be due to hyperinflammation associated with SARS-CoV-2 infections.Resveratrol, kolaviron, quercetin and apigenin are polyphenols with proven anti-inflammatory and therapeutic properties that can extenuate the adverse effects of COVID-19. These polyphenolshave been documented to suppress JNK, PI3-K, NF-kB and MAPK pathways which are essential in the pathogenesis of COVID-19. They also showed significant inhibitory activities against SARS-CoV-2 proteins. Taken together, these polyphenols may offer neuroprotective benefits against COVID-19 mediated neuropathology.

Reference

1. WHO COVID-19 weekly epidemiological update- 24th November 2020. https://who.int/publications/m/item/weekly-epidermiological-update---24-november-2020.
2. NCDC. Coronavirus COVID-19. https://covid19.ncdc.gov.ng
3. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of 2019 novel coronavirus infection in China. N Engl J Med 2020. doi:10.1056/NEJMoa2002032 .
4. World Health Organization (WHO). Q&A on coronaviruses (COVID-19);2020. Available from: https://www.who.int/news-room/q-a-detail/q-a-coronaviruses. Accessed March 6, 2020.
5. Chen N , Zhou M , Dong X , Qu J , Gong F , Han Y , et al. Epidemiological and clini- cal characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395:507–13.
6. Ahmed MU, Hanif M, Ali MJ,Haider MA, Kherani D, Memon GM,Karim AH andSattar A (2020)Neurological Manifestations ofCOVID-19 (SARS-CoV-2): A Review.Front. Neurol. 11:518.doi: 10.3389/fneur.2020.00518
7. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologicmanifestations of hospitalized patients with coronavirus disease 2019 inWuhan, China. JAMA Neurol. (2020). e201127. doi: 10.1001/jamaneurol.2020.1127
8. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19virus targeting the CNS: tissue distribution, host–virus interaction, andproposed neurotropic mechanisms. ACS Chem Neurosci. (2020) 11:995–8.doi: 10.1021/acschemneuro.0c00122
9. Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J GastroenterolHepatol. (2020) 35:744–8. doi: 10.1111/jgh.15047
10. Swanson PA 2nd, McGavern DB. Viral diseases of the central nervous system.CurrOpinVirol. (2015) 11:44–54. doi: 10.1016/j.coviro.2014.12.009
11. Li YC, BaiWZ,Hashikawa T. The neuroinvasive potential of SARS-CoV2 mayplay a role in the respiratory failure of COVID-19 patients. JMedVirol. (2020)92:552–5. doi: 10.1002/jmv.25728
12. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, Khamashta MA, Bosch X. Adult haemophagocytic syndrome. Lancet 2014; 383: 1503–16.
13. Henter JI, Samuelsson-Harne A, Arico M, Egeler RM, Elinder G, Filipovich AH, et al. Treatment of haemophagocyticlymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood. 2002; 100: 2367-73.
14. Seguin A, Galicier L, Boutboul D, Lemiale V, Azoulay E. Pulmonary involvement in patients with hemophagocytic lymphohistiocytosis. Chest 2016; 149: 1294–301.
15. Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic alterationsdue to respiratory virus infections. Front Cell Neurosci. (2018) 12:386.doi: 10.3389/fncel.2018.00386
16. Chen N , Zhou M , Dong X , Qu J , Gong F , Han Y , et al. Epidemiological and clini- cal characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507–13.
17. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 2012;3(6): e00473–e512.
18. Phan, T., 2020. Novel coronavirus: from discovery to clinical diagnostics. Infect. Genet.Evo. 79, 104211. https://doi.org/10.1016/j.meegid.2020.104211.
19. Liu, Z., Xiao, X.,Wei, X., Li, J., Yang, J., Tan, H., Zhu, J., Zhang, Q.,Wu, J., Liu, L., 2020b. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J. Med. Virol. https://doi.org/10.1002/jmv.25726.
20. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011;85(9):4122–34.
21. Bertram S, Glowacka I, Müller MA, Lavender H, Gnirss K, Nehlmeier I, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol 2011;85 (24):13363–72.
22. Chan JF, To KK, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 2013; 21:544–55.
23. Siu, K.L., Yuen, K.S., Castaño-Rodriguez, C., Ye, Z.W., Yeung, M.L., Fung, S.Y., Yuan, S., Chan, C.P., Yuen, K.Y., Enjuanes, L., 2019. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 33, 8865–8877. https://doi.org/10.1096/fj.201802418R.
24. Nieto-Torres, J.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Castaño-Rodriguez, C., Fernandez-Delgado, R., Torres, J., Aguilella, V.M., Enjuanes, L., 2015. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485, 330–339. https://doi.org/10.1016/j.virol.2015.08.010.
25. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497–506.
26. Wu, A., Peng, Y., Huang, B., Ding, X.,Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z.,Wang, J., 2020a. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27, 325–328. https://doi.org/10.1016/j.chom.2020.02.001.
27. Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong,W.,Wang, Y.,Wang, Q., Xu, Y., Li, M., Li, X., 2020b. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B https://doi.org/10.1016/j.apsb.2020.02.008.
28. Xu, J., Zhao, S., Teng, T., Abdalla, A.E., Zhu,W., Xie, L.,Wang, Y., Guo, X., 2020a. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 12, 244. https://doi.org/10.3390/v12020244.
29. Xu, X., Yu, C., Qu, J., Zhang, L., Jiang, S., Huang, D., Chen, B., Zhang, Z., Guan, W., Ling, Z., 2020b. Imaging and clinical features of patients with 2019 novel coronavirus SARSCoV-2. Eur. J. Nucl. Med. and Mol. Imaging, 1–6 https://doi.org/10.1007/s00259-020-04735-9.
30. Yin, Y., Wunderink, R.G., 2018.MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 23, 130–137. https://doi.org/10.1111/resp.13196.
31. Zhao, Y., Zhao, Z.,Wang, Y., Zhou, Y., Ma, Y., Zuo,W., 2020. Single-cell RNA expressionprofilingof ACE2, the putative receptor of Wuhan 2019-nCov. BioRxivhttps://doi.org/10.1101/2020.01.26.919985.
32. Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., Du, L., 2020.Characterizationof the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for developmentof RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol.Immunol., 1–8 https://doi.org/10.1038/s41423-020-0400-4.
33. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al.Quercetin, inflammation and immunity. Nutrients. (2016)8:167. doi: 10.3390/nu8030167
34. Y. Guo andR. S. Bruno, “Endogenous and exogenousmediatorsof quercetin bioavailability,” The Journal of Nutritional Biochemistry,vol. 26, no. 3, pp. 201–210, 2015.
35. Nair MP, Kandaswami C, Mahajan S, Chadha KC, Chawda R,NairandSchwartz SAH. The flavonoid, quercetin, differentially regulatesTh-1 (IFNgamma) and Th-2 (IL4) cytokine gene expression by normalperipheral blood mononuclear cells. BiochimBiophys Acta. (2002)1593:29–36. doi: 10.1016/S0167-4889(02)00328-2
36. Robaszkiewicz A, Balcerczyk A, Bartosz G. Antioxidative and prooxidativeeffects of quercetin on A549 cells. Cell Biol Int. (2007) 31:1245–50. doi: 10.1016/j.cellbi.2007.04.009
37. Uchide N, Toyoda H. Antioxidant therapy as a potential approachto severe influenza-associated complications. Molecules. (2011) 16:2032–52. doi: 10.3390/molecules16032032
38. G. S. Kelly, “Quercetin. Monograph,” Alternative MedicineReview, vol. 16, no. 2, pp. 172–194, 2011.
39. M. Russo, C. Spagnuolo, I. Tedesco, S. Bilotto, and G. L. Russo,“The flavonoid quercetin in disease prevention and therapy:facts and fancies,” Biochemical Pharmacology, vol. 83, no. 1, pp.6–15, 2012.
40. A.W. Boots, G. R. M. M.Haenen, and A. Bast, “Health effects ofquercetin: from antioxidant to nutraceutical,” European Journalof Pharmacology, vol. 585, no. 2-3, pp. 325–337, 2008.
41. Spedding G, Ratty A, Middleton E Jr. Inhibition of reversetranscriptases by flavonoids. Antiviral Res. (1989) 12:99–110. doi: 10.1016/0166-3542(89)90073-9
42. Bachmetov L, Gal-Tanamy M, Shapira A, Vorobeychik M, Giterman-GalamT, Sathiyamoorthy P, et al. Suppression of hepatitis C virus by the flavonoidquercetin is mediated by inhibition of NS3 protease activity. J Viral Hepat.(2012) 19:e81–8. doi: 10.1111/j.1365-2893.2011.01507.x
43. Shinozuka K, Kikuchi Y, Nishino C, Mori A, Tawata S. Inhibitory effectof flavonoids on DNA-dependent DNA and RNA polymerases. Experientia.(1988) 44:882–5. doi: 10.1007/BF01941188
44. Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J AntimicrobAgents. (2005) 26:343–56. doi: 10.1016/j.ijantimicag.2005.09.002
45. Debiaggi M, Tateo F, Pagani L, Luini M, Romero E. Effects ofpropolis flavonoids on virus infectivity and replication. Microbiologica.(1990) 13:207–13.
46. Liu S, Wu S, Jiang S. HIV entry inhibitors targeting gp41: frompolypeptides to small-molecule compounds. CurrPharmDes. (2007) 13:143–62. doi: 10.2174/138161207779313722
47. Yang J, Li M, Shen X, Liu S. Influenza A virus entry inhibitors targeting thehemagglutinin. Viruses. (2013) 5:352–73. doi: 10.3390/v5010352
48. Xia S, Liu Q, Wang Q, Sun Z, Su S, Duand L, et al. Middle East respiratorysyndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein.Virus Res. (2014) 194:200–10. doi: 10.1016/j.virusres.2014.10.007
49. Wu W, Li R, Li X, He J, Jiang S, Liu S, et al. Quercetin as anantiviral agent inhibits Influenza A Virus (IAV) entry. Viruses. (2015)8:6. doi: 10.3390/v8010006
50. Ono K, Nakane H. Mechanisms of inhibition of various cellular DNAand RNA polymerases by several flavonoids. J Biochem. (1990) 108:609–13. doi: 10.1093/oxfordjournals.jbchem.a123251
51. Ono K, Nakane H, Fukushima M, Chermann JC, Barré-Sinoussi F.Differential inhibitory effects of various flavonoids on the activities of reversetranscriptase and cellular DNA and RNA polymerases. Eur J Biochem. (1990)190:469–76. doi: 10.1111/j.1432-1033.1990.tb15597.x
52. Chiang LC, Chiang W, Liu MC, Lin CC. In vitro antiviral activities ofCaesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother.(2003) 52:194–8. doi: 10.1093/jac/dkg291
53. Li BW, Zhang FH, Serrao E, Chen H, Sanchez TW, Yang LM, et al. Designand discovery of flavonoid-based HIV-1 integrase inhibitors targeting boththe active site and the interaction with LEDGF/p75. BioorgMed Chem. (2014)22:3146–58. doi: 10.1016/j.bmc.2014.04.016
54. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules blockingthe entry of severe acute respiratory syndrome coronavirus into host cells. JVirol. (2004) 78:11334. doi: 10.1128/JVI.78.20.11334-11339.2004
55. Chen L, Li J, Luo C, Liu H, Xu W, Chen G, et al. Bindinginteraction of quercetin-3-beta-galactoside and its synthetic derivativeswith SARS-CoV 3CL(pro): structure-activity relationship studies revealsalient pharmacophore features. Bioorg Med Chem. (2006) 14:8295–306. doi: 10.1016/j.bmc.2006.09.014
56. Jitendra S. R., Aroni C., Abhijeet K., Shashikant R. (2020): Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12094203.v1.
57. Jeandet, P., Douillet-Breuil, A. C., Bessis, R., Debord, S., Sbaghi,M., and Adrian, M. (2002) Phytoalexins from the Vitaceae:Biosynthesis, phytoalexin gene expression in transgenic plants,antifungal activity, and metabolism. J. Agric. Food Chem. 50, 2731−2741.
58. de Santi, C., Pietrabissa, A., Mosca, F., and Pacifici, G. M.(2000) Glucuronidation of resveratrol, a natural product present ingrape and wine, in the human liver. Xenobiotica 30, 1047−1054.
59. De Santi, C., Pietrabissa, A., Spisni, R., Mosca, F., and Pacifici, G.M. (2000) Sulphation of resveratrol, a natural compound present inwine, and its inhibition by natural flavonoids. Xenobiotica 30, 857−866.
60. Ribeiro de Lima, M. T., Waffo-Teguo, P., Teissedre, P. L.,Pujolas, A., Vercauteren, J., Cabanis, J. C., and Merillon, J. M. (1999)Determination of stilbenes (trans-astringin, cis- and trans-piceid, andcis- and trans-resveratrol) in Portuguese wines. J. Agric. Food Chem. 47,2666−2670.
61. BerzasNevado, J. J., Contento Salcedo, A. M., and CastanedaPenalvo, G. (1999) Simultaneous determination of cis- and transresveratrolin wines by capillary zone electrophoresis. Analyst 124, 61−66.
62. Kopp, P. (1998) Resveratrol, a phytoestrogen found in red wine.A possible explanation for the conundrum of the ‘French paradox’?Eur. J. Endocrinol. 138, 619−620.
63. Hengst, J. A., and Yun, J. K. (2012) Sphingosine kinase: A key tosolving the ‘French Paradox’? Br. J. Pharmacol. 166, 1603−1604.
64. Ferrieres, J. (2004) The French paradox: Lessons for othercountries. Heart 90, 107−111.
65. Constant, J. (1997) Alcohol, ischemic heart disease, and theFrench paradox. Coron. Artery Dis. 8, 645−649.
66. Wang, Z., Zou, J., Cao, K., Hsieh, T. C., Huang, Y., and Wu, J.M. (2005) Dealcoholized red wine containing known amounts ofresveratrol suppresses atherosclerosis in hypercholesterolemic rabbitswithout affecting plasma lipid levels. Int. J. Mol. Med. 16, 533−540.
67. Szmitko, P. E., and Verma, S. (2005) Cardiology patient pages.Red wine and your heart. Circulation 111, e10−11.
68. Berardi, V., Ricci, F., Castelli, M., Galati, G., and Risuleo, G.(2009) Resveratrol exhibits a strong cytotoxic activity in cultured cellsand has an antiviral action against polyomavirus: potential clinical use.J. Exp. Clin. Cancer Res. 28, 96.
69. Clouser, C. L., Chauhan, J., Bess, M. A., Oploo, J. L., Zhou, D.,Dimick-Gray, S., Mansky, L. M., and Patterson, S. E. (2012) Anti-HIV-1 activity of resveratrol derivatives and synergistic inhibition of HIV-1by the combination of resveratrol and decitabine. Bioorg. Med. Chem.Lett. 22, 6642−6646.
70. Nicolini, G., Rigolio, R., Miloso, M., Bertelli, A. A., and Tredici,G. (2001) Anti-apoptotic effect of trans-resveratrol on paclitaxelinducedapoptosis in the human neuroblastoma SH-SY5Y cell line.Neurosci. Lett. 302, 41−44.
71. Baarine, M., Thandapilly, S. J., Louis, X. L., Mazue, F., Yu, L.,Delmas, D., Netticadan, T., Lizard, G., and Latruffe, N. (2011) Proapoptoticversus anti-apoptotic properties of dietary resveratrol ontumoral and normal cardiac cells. Genes Nutr. 6, 161−169.
72. Udenigwe, C. C., Ramprasath, V. R., Aluko, R. E., and Jones, P. J.(2008) Potential of resveratrol in anticancer and anti-inflammatorytherapy. Nutr. Rev. 66, 445−454.
73. Chen, G., Shan, W., Wu, Y., Ren, L., Dong, J., and Ji, Z. (2005)Synthesis and anti-inflammatory activity of resveratrol analogs. Chem.Pharm. Bull. (Tokyo) 53, 1587−1590.
74. Chang, C. C., Chang, C. Y., Huang, J. P., and Hung, L. M.(2012) Effect of resveratrol on oxidative and inflammatory stress inliver and spleen of streptozotocin-induced type 1 diabetic rats. Chin. J.Physiol. 55, 192−201.
75. Dao, T. M., Waget, A., Klopp, P., Serino, M., Vachoux, C.,Pechere, L., Drucker, D. J., Champion, S., Barthelemy, S., Barra, Y.,Burcelin, R., and Seree, E. (2011) Resveratrol increases glucoseinduced GLP-1 secretion in mice: A mechanism which contributes tothe glycemic control. PLoS One 6, No. e20700.
76. Spanier, G., Xu, H., Xia, N., Tobias, S., Deng, S., Wojnowski, L.,Forstermann, U., and Li, H. (2009) Resveratrol reduces endothelialoxidative stress by modulating the gene expression of superoxidedismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPHoxidase subunit (Nox4). J. Physiol. Pharmacol. 60 (Suppl 4), 111−116.
77. F. Vella, G. Ferry, P. Delagrange, J.A. Boutin, NRH:quinone reductase 2: an enzymeof surprises and mysteries, Biochem. Pharmacol. 71 (2005) 1–12.
78. C.E. Benoit, S. Bastianetto, J. Brouillette, Y. Tse, J.A. Boutin, P. Delagrange, T.Wong, P.Sarret, R. Quirion, Loss of quinone reductase 2 function selectively facilitateslearning behaviors, J. Neurosci. 30 (2010) 12690–12700.
79. F. Zhang, J. Liu, J.S. Shi, Anti-inflammatory activities of resveratrol in the brain: roleof resveratrol in microglial activation, Eur. J. Pharmacol. 636 (2010) 1–7.
80. Block, M. L., and Hong, J. S. (2007) Chronic microglialactivation and progressive dopaminergic neurotoxicity. Biochem. Soc.Trans. 35, 1127−1132.
81. Gao, H. M., Liu, B., Zhang, W., and Hong, J. S. (2003) Novelanti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol.Sci. 24, 395−401.
82. Ransohoff, R. M., and Perry, V. H. (2009) Microglialphysiology: Unique stimuli, specialized responses. Annu. Rev. Immunol.27, 119−145.
83. Zhang, F., Liu, J., and Shi, J. S. (2010) Anti-inflammatoryactivities of resveratrol in the brain: role of resveratrol in microglialactivation. Eur. J. Pharmacol. 636, 1−7.
84. Candelario-Jalil, E., de Oliveira, A. C., Graf, S., Bhatia, H. S.,Hull, M., Munoz, E., and Fiebich, B. L. (2007) Resveratrol potentlyreduces prostaglandin E2 production and free radical formation inlipopolysaccharide-activated primary rat microglia. J. Neuroinflammation4, 25.
85. Lorenz, P., Roychowdhury, S., Engelmann, M., Wolf, G., andHorn, T. F. (2003) Oxyresveratrol and resveratrol are potentantioxidants and free radical scavengers: Effect on nitrosative andoxidative stress derived from microglial cells. Nitric Oxide 9, 64−76.
86. Bi, X. L., Yang, J. Y., Dong, Y. X., Wang, J. M., Cui, Y. H.,Ikeshima, T., Zhao, Y. Q., and Wu, C. F. (2005) Resveratrol inhibitsnitric oxide and TNF-alpha production by lipopolysaccharide-activatedmicroglia. Int. Immunopharmacol. 5, 185−193.
87. Bureau, G., Longpre, F., and Martinoli, M. G. (2008)Resveratrol and quercetin, two natural polyphenols, reduce apoptoticneuronal cell death induced by neuroinflammation. J. Neurosci. Res. 86,403−410.
88. Shin, J. A., Lee, H., Lim, Y. K., Koh, Y., Choi, J. H., and Park, E.M. (2010) Therapeutic effects of resveratrol during acute periodsfollowing experimental ischemic stroke. J. Neuroimmunol. 227, 93−100.
89. Oladele JO, Ajayi EIO, Oyeleke OM, Oladele OT, Olowookere BD, Adeniyi BM, Oyewole OI, Oladiji AT.(2020). Asystematic review on COVID-19 pandemic with special emphasis on Curative potentials ofmedicinal plants. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04897.
90. Dewick, P.M. Chimica, Biosintesi e BioattivitàdelleSostanzeNaturali; Piccin: Roma, Italy, 2001.
91. Campbell, E.L.; Chebib, M.; Johnston, G.A.R. The dietary flavonoids apigenin and (-)- epigallocatechingallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABA(A)receptors. Biochem. Pharmacol. 2004, 68, 1631–1638.
92. Jäger, A.K.; Krydsfeldt, K.; Rasmussen, H.B. Bioassay-guided isolation of apigenin with GABAbenzodiazepineactivity from Tanacetum parthenium. Phytother. Res. 2009, 23, 1642–1644.
93. Sloley, B.D.; Urichuk, L.J.; Morley, P.; Durkin, J.; Shan, J.J.; Pang, P.K.T.; Coutts, R.T. Identification ofkaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo bilobaleaves. J. Pharm. Pharmacol. 2000, 52, 451–459.
94. Zhao, L.;Wang, J.; Liu, R.; Li, X.X.; Li, J.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophiceffects of apigenin in an Alzheimer’s disease mouse model. Molecules 2013, 18, 9949–9965.
95. Nabavi, S.F.; Khan, H.; D’onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Argüelles, S.; Habtemariam, S.;Sobarzo-Sanchez, E. Apigenin as neuroprotective agent: Of mice and men. Pharm. Res. 2018, 128, 359–365.
96. Rezai-Zadeh, K.; Ehrhart, J.; Bai, Y.; Sanberg, P.R.; Bickford, P.; Tan, J.; Douglas, R.D.Apigenin and luteolinmodulate microglial activation via inhibition of STAT1-induced CD40expression. J. Neuroinflamm. 2008, 5,41–51.
97. Nicholas, C.; Batra, S.; Vargo, M.A.; Voss, O.H.; Gavrilin, M.A.;Wewers, M.D.; Guttridge, D.C.; Grotewold, E.;Doseff, A.I. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokinesexpression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J. Immunol. 2007,179, 7121–7127.
98. Myhrstad, M.C.W.; Carlsen, H.; Nordström, O.; Blomhoff, R.; Moskaug, J.Ø. Flavonoids increase theintracellular glutathione level by transactivation of the -glutamylcysteine synthetase catalytical subunitpromoter. Free Radic. Biol. Med. 2002, 32, 386–393.
99. Paredes-Gonzalez, X.; Fuentes, F.; Jeffery, S.; Saw, C.L.L.; Shu, L.; Su, Z.Y.; Kong, A.N.T. Induction ofNRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharm. DrugDispos. 2015, 36, 440–451.
100. Huang, C.S.; Lii, C.K.; Lin, A.H.; Yeh, Y.W.; Yao, H.T.; Li, C.C.;Wang, T.S.; Chen, H.W. Protection by chrysin,apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of hemeoxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch. Toxicol. 2013, 87, 167–178.
101. Peng, Q.; Deng, Z.; Pan, H.; Gu, L.; Liu, O.; Tang, Z. Mitogen-activated protein kinase signaling pathway inoral cancer. Oncol. Lett. 2017, 15, 1379–1388.
102. Oladele JO, Oyeleke OM, Oladele OT, Olowookere BD, Oso BJ, Oladiji AT. (2020). Kolaviron (Kolaflavanone), apigenin, fisetin as potential Coronavirus inhibitors: In silico investigation
103. Oladele J.O., Oladele O.T., Ademiluyi A.O., Oyeleke O.M., Awosanya O.O., Oyewole O.I. (2020). Chaya (Jatropha tanjorensis) leafs protect against sodium benzoate mediated renal dysfunction and hepatic damage in rats. Clinical Phytoscience.
104. Oladele J.O.,Oyeleke O.M., Oladele O.T., Babatope O.D., Awosanya O.O. (2020). Nitrobenzene-induced hormonal disruption, alteration of steroidogenic pathway, and oxidative damage in rat: protective effects of Vernonia amygdalina. Clinical Phytoscience.
105. Oladele JO.,Oyeleke OM.,Awosanya OO., Olowookere BD., Oladele OT. (2020).Fluted Pumpkin (Telfaira occidentalis) protects against phenyl hydrazine-induced anaemia and toxicities in rats. Advances in Traditional Medicine. 10.1007/s13596-020-00499-7
106. Oladele JO.,Oyeleke OM., Oladele OT. Olaniyan MD. (2020). Neuroprotective mechanism of Vernonia amygdalina in a rat model of neurodegenerative diseases.Toxicology report. https://doi.org/10.1016/j.toxrep.2020.09.005.
107. Oladele, J.O., Oyewole, O.I., Bello, O.K., Oladele, O.T. (2017). Hepatoprotective Effect of Aqueous Extract of Telfairia occidentalis on Cadmium Chloride-Induced Oxidative Stress and Hepatotoxicity in Rats. Journal of Drug Design andMedicinal Chemistry. 3(3): 32-36.
108. Oyewole, O.I., Oladele, J.O., and Oladele, O.T. (2017). Methanolic leaf extract of Ficus Exasperata Leaf attenuates Arsenate-Mediated hepatic and renal oxidative stress in rats. Res. J. of Health Sci. 5(2): 115- 123.
109. Iwu MM (1985). Antihepatotoxic constituents of Garcinia kola seeds. Experientia 41: 699-670.
110. Taiwo, O.; Xu, H.-X.; Lee, S.F. (1999). Antibacteria activities of extracts from Nigerian chewing sticks. Phytother. Res., 13, 675-679.
111. Farombi EO, Tahnteng JG, Agboola AO, Nwankwo JO, and Emerole GO (2000). Chemoprevention of 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron-a Garcinia kola seed extract. Food Chem Toxicol; 38: 535–541.
112. Farombi, E O Adepoju, B F Ola-Davies O E and Emerole, G O. (2005). Chemoprevention of aflatoxin B1-induced genotoxicity and hepatic oxidative damage in rats by kolaviron, a natural biflavonoid of Garcinia kola seeds. European Journal of Cancer Prevention, 14, No. 3:207–214.
113. Farombi, E. O. (2000). Mechanisms for the hepatoprotective action of kolaviron: studies on hepatic enzymes, microsomal lipids and lipid peroxidation in carbontetrachloride-treated rats Pharmacological Research, Vol. 42, No. 1, 2000.
114. Farombi, E. O., Shrotriya, S., and Surh, Y. J. (2009). Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-κB and AP-1. Life Sciences. Volume 84, Issues 5–6, Pages 149–155.
115. Abarikwu, S O., Farombi E. O, Kashyap, M. P., and Pant, A. B. (2011). Kolaviron protects apoptotic cell death in PC12 cells exposed to Atrazine Free Radical Research, September 2011; 45(9): 1061–1073
116. Abarikwu, S.O., Farombi, E.O., and Pant, A.B. (2011)b.Biflavanone-kolaviron protects human dopaminergic SH-SY5Y cells against atrazine induced toxic insult Toxicology in Vitro 25 848–858.
117. Igado, O. O, Olopade, J O, Adesida A, Aina, O. O., and Farombi, E. O. (2012). Morphological and biochemical investigation into the possible neuroprotective effects of kolaviron (Garcinia kola bioflavonoid) on the brains of rats exposed to vanadium. Drug and Chemical Toxicology, 35(4): 371–380.
118. Onasanwo, S.A., Velagapudi, R., El-Bakoush, A., Olajide, O.A., 2016. Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism. Mol. Cell. Biochem. 414, 23–26.
119. Olajide, O.J., Asogwa, N.T., Moses, B.O., Oyegbola, C.B., 2017. Multidirectional inhibition of cortico-hippocampal neurodegeneration by kolaviron treatment in rats. Metab. Brain Dis. https://doi.org/10.1007/s11011-017-0012-6.
120. Omotoso, G.O., Ukwubile, I.I., Arietarhire, L., Sulaimon, F., Gbadamosi, I.T., 2018. Kolaviron Protects the brain in Cuprizone-induced Model of Experimental Multiple Sclerosis via enhancement of intrinsic antioxidant mechanisms: Possible Therapeutic Applications? Pathophysiology 25, 299–306. https://doi.org/10.1016/j.pathophys. 2018.04.004.
121. Farombi EO, Awogbindin IO, Farombi TH, Oladele JO, Izomoh ER, Aladelokun OB, Ezekiel IO, Adebambo OI, Abah VO (2019) Neuroprotective role of kolaviron in striatal redo-inflammation associated with rotenone model of Parkinson’s disease. Neurotoxicology 73:132–141. https://doi.org/10.1016/j.neuro.2019.03.005
Objavljeno
2025/12/22
Rubrika
Originalni rad / Original article