Geni pigmentoze retinitisa uključeni u populaciju Amerike: sistematski pregled

Sažetak


Uvod/Cilj. Da sumiramo nalaze studija koje se odnose na gene koji su uključeni u retinitis pigmentosa, kod autozomno dominantnih (adRP), autosomno recesivnih (arRP) i Ks-vezanih RP (klRP) pacijenata u Americi.

Materijal i metode. U ovoj sveobuhvatnoj pretrazi literature preko Medline / PubMed baze podataka, SciELO, Redalic, ScienceDirect i Google Scholar (engleski/španski); Pregledano je 75 članaka u periodu od 2010-2020, konačna analiza je urađena od 21 članka.

Rezultati. Glavne mutacije gena pronađene u Americi za adRP bile su RHO (Rhodopsin) i PRPF31 (Pre-MRNA Processing Factor 31); za arRP, USH2A (Usherin 2A) i EIS, (homolog za zatvorene oči; i za klRP, RPGR (retinitis pigmentosa GTPase regulator) i RP2 (retinitis pigmentosa 2).

Zaključak Većina gena koji se trenutno nalaze širom sveta da uzrokuju RP bili su prisutni u Americi, sa sličnostima i razlikama sa drugim populacijama u Aziji i Evropi.

Reference

1. Orphanet. 2021. The portal for rare diseases and orphan drugs. Retinitis pigmentosa. Retrieved from https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=659
2. Dias MF, Joo K, Kemp JA, et al. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res. 2018;63:107-131. https://doi.org/10.1016/j.preteyeres.2017.10.004.
3. Verbakel SK, van Huet RAC, Boon CJF, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157-186. https://doi.org/10.1016/j.preteyeres.2018.03.005.
4. Lunghi C, Galli-Resta L, Binda P, et al. Visual Cortical Plasticity in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci. 2019;60(7):2753-2763. https://doi.org/10.1167/iovs.18-25750.
5. Daiger SP, Bowne SJ, Sullivan LS. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa. Cold Spring Harb Perspect Med. 2014;5(10):a017129. https://doi.org/10.1101/cshperspect.a017129.
6. Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res. 2014;43:108-28. https://doi.org/10.1016/j.preteyeres.2014.08.001.
7. Delgado-Pelayo SA. Retinosis. Rev Med MD. 2012;3(3):163–166.
8. Motta FL, Martin RP, Filippelli-Silva R, et al. Relative frequency of inherited retinal dystrophies in Brazil. Sci Rep. 2018;8(1):15939. https://doi.org/10.1038/s41598-018-34380-0.
9. Zenteno JC, García-Montaño LA, Cruz-Aguilar M, et al. Extensive genic and allelic heterogeneity underlying inherited retinal dystrophies in Mexican patients molecularly analyzed by next-generation sequencing. Mol Genet Genomic Med. 2020;8(1):10.1002/mgg3.1044. https://doi.org/10.1002/mgg3.1044.
10. Zhang Q, Xu M, Verriotto JD, et al. Next-generation sequencing-based molecular diagnosis of 35 Hispanic retinitis pigmentosa probands. Sci Rep. 2016;6:32792. https://doi.org/10.1038/srep32792.
11. Coussa RG, Chakarova C, Ajlan R, et al. Genotype and Phenotype Studies in Autosomal Dominant Retinitis Pigmentosa (adRP) of the French Canadian Founder Population. Invest Ophthalmol Vis Sci. 2015;56(13):8297-305. https://doi.org/10.1167/iovs.15-17104. Erratum in: Invest Ophthalmol Vis Sci. 2017 Sep 1;58(11):4768.
12. Benaglio P, San Jose PF, Avila-Fernandez A, et al. Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa. Mol Vis. 2014;20:843-51.
13. Tamayo Fernández M, Urrego Duque LF. Genética de la Retinitis pigmentosa. 2003, nov. 20. https://www.javeriana.edu.co/documents/5782625/5901279/COLECCION+DERECHO+A+VIVIR+EN+DESVENTAJA+FOLLETO+%23%2014.pdf/7a970e9f-9813-4b0f-ad13-2518c656fd3c
14. Palma MMD, Martin D, Salles MV, et al. Retinal dystrophies and variants in PRPH2. Arq Bras Oftalmol. 2019;82(2):158-160. https://doi.org/10.5935/0004-2749.20190033.
15. Bryant L, Lozynska O, Marsh A, et al. Identification of a novel pathogenic missense mutation in PRPF31 using whole exome sequencing: a case report. Br J Ophthalmol. 2019;103(6):761-767. https://doi.org/10.1136/bjophthalmol-2017-311405.
16. McGuigan DB, Heon E, Cideciyan AV, et al. EYS Mutations Causing Autosomal Recessive Retinitis Pigmentosa: Changes of Retinal Structure and Function with Disease Progression. Genes (Basel). 2017;8(7):178. https://doi.org/10.3390/genes8070178.
17. Venturini G, Koskiniemi-Kuendig H, Harper S, et al. Two specific mutations are prevalent causes of recessive retinitis pigmentosa in North American patients of Jewish ancestry. Genet Med. 2015;17(4):285-90. https://doi.org/10.1038/gim.2014.132.
18. Guzmán HO, Palacios AM, De Almada MI, Utrera RA. A novel homozygous MYO7A mutation involved in a Venezuelan population with high frequency of USHER1B. Ophthalmic Genet. 2016;37(3):328-30. https://doi.org/10.3109/13816810.2015.1071410.
19. Sullivan LS, Bowne SJ, Koboldt DC, et al. A Novel Dominant Mutation in SAG, the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States. Invest Ophthalmol Vis Sci. 2017;58(5):2774-2784. https://doi.org/10.1167/iovs.16-21341.
20. Santana EE, Fuster-García C, Aller E, et al. Genetic Screening of the Usher Syndrome in Cuba. Front Genet. 2019;10:501. https://doi.org/10.3389/fgene.2019.00501.
21. Mullins RF, Kuehn MH, Radu RA, et al. Autosomal recessive retinitis pigmentosa due to ABCA4 mutations: clinical, pathologic, and molecular characterization. Invest Ophthalmol Vis Sci. 2012;53(4):1883-94. https://doi.org/10.1167/iovs.12-9477.
22. Ladino LY, Galvis J, Yasnó D, Ramírez A, Beltrán OI. Variante patogénica homocigótica del gen BBS10 en un paciente con síndrome de Bardet-Biedl. Biomedica. 2018;38(3):308-20. https://doi.org/10.7705/biomedica.v38i4.4199.
23. López G, Gelvez N, Urrego LF, et al. Análisis Molecular de las Mutaciones 2299delG y C759F en Individuos Colombianos con Retinitis Pigmentosa e Hipoacusia Neurosensorial Molecular. NOVA 2014;12(22):131–141. https://doi.org/10.22490/24629448.1038
24. Seyedahmadi BJ, Rivolta C, Keene JA, et al. Comprehensive screening of the USH2A gene in Usher syndrome type II and non-syndromic recessive retinitis pigmentosa. Exp Eye Res. 2004;79(2):167-73. https://doi.org/10.1016/j.exer.2004.03.005.
25. Esperón-Álvarez A, Rosado-Ruíz-Apodaca I, Santana-Hernández E, et al. Análisis genético molecular de las mutaciones c . 2299delG y c . 2276C > G en el gen USH2A en pacientes Cubanos con síndrome Usher tipo 2. Rev Cubana Genet Comunit. 2017;11(1):14-19.
26. Breuer DK, Yashar BM, Filippova E, et al. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet. 2002;70(6):1545-54. https://doi.org/10.1086/340848.
27. Churchill JD, Bowne SJ, Sullivan LS, et al. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2013;54(2):1411-6. https://doi.org/10.1167/iovs.12-11541.
28. Webb TR, Parfitt DA, Gardner JC, et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum Mol Genet. 2012;21(16):3647-54. https://doi.org/10.1093/hmg/dds194.
29. Perez-Carro R, Corton M, Sánchez-Navarro I, et al. Panel-based NGS Reveals Novel Pathogenic Mutations in Autosomal Recessive Retinitis Pigmentosa. Sci Rep. 2016;6:19531. https://doi.org/10.1038/srep19531. Erratum in: Sci Rep. 2016 Apr 22;6:24843.
30. Ezquerra-Inchausti M, Barandika O, Anasagasti A, et al. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa. Sci Rep. 2017;7:39652. https://doi.org/10.1038/srep39652.
31. Huang L, Zhang Q, Huang X, et al. Mutation screening in genes known to be responsible for Retinitis Pigmentosa in 98 Small Han Chinese Families. Sci Rep. 2017;7(1):1948. https://doi.org/10.1038/s41598-017-00963-6.
32. Loukovitis Eleftherios D, Stoimeni Anastasia A, Tranos Paris G, Koukoula Stavrenia Ch, Anogeianakis George A, Recent Developments on the major genes involved in retinitis pigmentosa. IP Int J Ocul Oncol Oculoplasty 2020;6(3):157-166. https://doi.org/10.18231/j.ijooo.2020.036.
33. al-Maghtheh M, Inglehearn CF, Keen TJ, et al. Identification of a sixth locus for autosomal dominant retinitis pigmentosa on chromosome 19. Hum Mol Genet. 1994;3(2):351-4. https://doi.org/10.1093/hmg/3.2.351.
34. Gandra M, Anandula V, Authiappan V, et al. Retinitis pigmentosa: mutation analysis of RHO, PRPF31, RP1, and IMPDH1 genes in patients from India. Mol Vis. 2008;14:1105-13.
35. Van Cauwenbergh C, Coppieters F, Roels D, et al. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families. PLoS One. 2017;12(1):e0170038. https://doi.org/10.1371/journal.pone.0170038.
36. Beryozkin A, Levy G, Blumenfeld A, et al. Genetic Analysis of the Rhodopsin Gene Identifies a Mosaic Dominant Retinitis Pigmentosa Mutation in a Healthy Individual. Invest Ophthalmol Vis Sci. 2016;57(3):940-7. https://doi.org/10.1167/iovs.15-18702.
37. Martínez-Gimeno M, Gamundi MJ, Hernan I, et al. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2003;44(5):2171-7. https://doi.org/10.1167/iovs.02-0871.
38. Kim MS, Joo K, Seong MW, et al. Genetic Mutation Profiles in Korean Patients with Inherited Retinal Diseases. J Korean Med Sci. 2019;34(21):e161. doi: 10.3346/jkms.2019.34.e161. Erratum in: J Korean Med Sci. 2019 Sep 09;34(35):e245. https://doi.org/10.3346/jkms.2019.34.e161. Erratum in: J Korean Med Sci. 2019 Sep 09;34(35):e245.
39. Ziviello C, Simonelli F, Testa F, et al. Molecular genetics of autosomal dominant retinitis pigmentosa (ADRP): a comprehensive study of 43 Italian families. J Med Genet. 2005;42(7):e47. https://doi.org/10.1136/jmg.2005.031682.
40. Ali MU, Rahman MSU, Cao J, Yuan PX. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech. 2017;7(4):251. https://doi.org/10.1007/s13205-017-0878-3.
41. Ferrari S, Di Iorio E, Barbaro V, et al. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics. 2011;12(4):238-49. https://doi.org/10.2174/138920211795860107.
42. Toualbi L, Toms M, Moosajee M. USH2A-retinopathy: From genetics to therapeutics. Exp Eye Res. 2020;201:108330. https://doi.org/10.1016/j.exer.2020.108330.
43. Tracewska AM, Kocyła-Karczmarewicz B, Rafalska A, et al. Genetic Spectrum of ABCA4-Associated Retinal Degeneration in Poland. Genes (Basel). 2019;10(12):959. https://doi.org/10.3390/genes10120959.
44. Sharon D, Banin E. Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. Mol Vis. 2015;21:783-92.
45. Fahim AT, Bouzia Z, Branham KH, et al. Detailed clinical characterisation, unique features and natural history of autosomal recessive RDH12-associated retinal degeneration. Br J Ophthalmol. 2019;103(12):1789-1796. https://doi.org/10.1136/bjophthalmol-2018-313580.
46. Numa S, Oishi A, Higasa K, et al. EYS is a major gene involved in retinitis pigmentosa in Japan: genetic landscapes revealed by stepwise genetic screening. Sci Rep. 2020;10(1):20770. https://doi.org/10.1038/s41598-020-77558-1.
47. Bocquet B, Lacroux A, Surget MO, et al. Relative frequencies of inherited retinal dystrophies and optic neuropathies in Southern France: assessment of 21-year data management. Ophthalmic Epidemiol. 2013;20(1):13-25. https://doi.org/10.3109/09286586.2012.737890.
48. Kurata K, Hosono K, Hayashi T, et al. X-linked Retinitis Pigmentosa in Japan: Clinical and Genetic Findings in Male Patients and Female Carriers. Int J Mol Sci. 2019;20(6):1518. https://doi.org/10.3390/ijms20061518.
49. Bravo-Gil N, González-Del Pozo M, Martín-Sánchez M, et al. Unravelling the genetic basis of simplex Retinitis Pigmentosa cases. Sci Rep. 2017;7:41937. https://doi.org/10.1038/srep41937.
50. Smith SO. Structure and activation of the visual pigment rhodopsin. Annu Rev Biophys. 2010;39:309-28. https://doi.org/10.1146/annurev-biophys-101209-104901
51. Ali-Nasser T, Zayit-Soudry S, Banin E, et al. Autosomal dominant retinitis pigmentosa with incomplete penetrance due to an intronic mutation of the PRPF31 gene. Mol Vis. 2022;28:359-368.
52. Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res. 2015;138:32-41. https://doi.org/10.1016/j.exer.2015.06.007.
53. Patil SB, Hurd TW, Ghosh AK, Murga-Zamalloa CA, Khanna H. Functional analysis of retinitis pigmentosa 2 (RP2) protein reveals variable pathogenic potential of disease-associated missense variants. PLoS One. 2011;6(6):e21379. https://doi.org/doi: 10.1371/journal.pone.0021379..
54. Cai X, Conley SM, Naash MI. RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet. 2009;30(2):57-62. https://doi.org/10.1080/13816810802626399.
55. Aleman TS, Uyhazi KE, Serrano LW, et al. RDH12 Mutations Cause a Severe Retinal Degeneration With Relatively Spared Rod Function. Invest Ophthalmol Vis Sci. 2018;59(12):5225-5236. https://doi.org/10.1167/iovs.18-24708.
56. Daich Varela M, Moya R, Schlottmann PG, et al. Ophthalmic genetics in South America. Am J Med Genet C Semin Med Genet. 2020;184(3):753-761. https://doi.org/10.1002/ajmg.c.31832.
Objavljeno
2025/11/19
Rubrika
Pregledni rad / Review article