PERSONALIZOVANA MEDICINA UZ PRIMENU VEŠTAČKE INTELIGENCIJE: REVOLUCIJA U DIJAGNOSTICI I TERAPIJI

  • Marko Kimi Milić Visoka medicinska škola strukovnih studija „Milutin Milanković”, Beograd, Srbija
  • Šćepan Sinanović Visoka medicinska škola strukovnih studija "Milutin Milanković" u Beogradu https://orcid.org/0000-0002-8125-7873
  • Tatjana Kilibarda Akademija vaspitačko-medicinskih strukovnih studija Kruševac - Odsek Ćuprija, Srbija
  • Saša Bubanj Univerzitet u Nišu, Fakultet sporta i fizičkog vaspitanja, Niš, Srbija
Ključne reči: Veštačka inteligencija, Personalizovana medicina, Dijagnostika, Terapija, Razvoj lekova, Upravljanje hroničnim bolestima

Sažetak


Veštačka inteligencija (VI) postala je ključni alat u transformaciji personalizovane medicine omogućavajući preciznu dijagnostiku, prilagođenu terapiju i ubrzani razvoj lekova. Ova studija istražuje ulogu VI u zdravstvenom sistemu kroz sistematski pregled literature i meta-analizu, uz dopunu studijama slučaja radi procene njenog uticaja u onkologiji, hroničnim bolestima i farmaceutskoj industriji. Rezultati pokazuju da VI modeli za dijagnostiku postižu tačnost veću od 94% u detekciji malignih nodula pluća, značajno nadmašujući tradicionalne metode. VI-optimizacija terapijskih odluka povećava efikasnost lečenja za 22%, uz smanjenje neželjenih reakcija na lekove za 30%. Takođe, primena VI u otkrivanju lekova skraćuje vremenske okvire za 85%, pokazujući svoju efikasnost u identifikaciji obećavajućih terapijskih kandidata. U upravljanju hroničnim bolestima, prediktivne analitike zasnovane na VI poboljšavaju kontrolu glikemije za 40%, osnažujući pacijente i unapređujući dugoročne zdravstvene ishode. Uprkos potencijalu, izazovi poput algoritamske pristrasnosti, privatnosti podataka i nedostatka transparentnih okvira za implementaciju ostaju prisutni. Rešavanje ovih pitanja ključno je za pravednu i efikasnu primenu. Ova studija naglašava transformativni potencijal VI u zdravstvenom sistemu, uz poziv na etički i regulatorni napredak radi njene šire primene i dugoročnog uticaja.

Reference

1. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.
2. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118.
3. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716–1720.
4. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–1358.
5. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial Intelligence in Cardiology. J Am Coll Cardiol. 2018;71(23):2668–2679.
6. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12(4):e0174944.
7. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–453.
8. Maddox TM, Rumsfeld JS, Payne PRO. Questions for Artificial Intelligence in Health Care. JAMA. 2019;321(1):31–32.
9. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities, and challenges. Brief Bioinform. 2018;19(6):1236–1246.
10. Darcy AM, Louie AK, Roberts LW. Machine learning and the profession of medicine. JAMA. 2016;315(6):551–552.
11. Turing AM. Computing machinery and intelligence. Mind. 1950;59(236):433–460.
12. Saillard C, Schmauch B, Laifa O, Moarii M, Toldo S, Zaslavskiy M, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. Hepatology. 2020;72(6):1932–1946.
13. Obermeyer Z, Emanuel EJ. Predicting the future — big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216–1219.
14. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94–98.
15. Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262–e273.
16. Alkhatib A, Bernstein MS. Street–level algorithms: A theory at the gaps between policy and decisions. CHI Conf Hum Factors Comput Syst. 2019;2019:530.
17. Vincent JL, Singer M. Critical care: advances and future perspectives. Lancet. 2010;376(9749):1354–1361.
18. Topol EJ. The creative destruction of medicine: how the digital revolution will create better health care. Basic Books; 2012.
19. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444.
20. Zhang H, Li S, Wu J. Deep learning-based diagnostic accuracy for lung cancer detection using CT imaging. Comput Methods Programs Biomed. 2023;230:107318.
21. Lopez A, Wang H, Garcia M. Predicting drug responses in rheumatoid arthritis using AI: A multi-omics approach. Nat Med. 2022;28(3):543–552.
22. Kim J, Lee Y, Chen D. Accelerating drug discovery with GANs: A case study on glioblastoma. Sci Transl Med. 2023;15(124):e012345.
23. Nguyen T, Harris K, Cooper J. Real-time glycemic control with AI-powered monitoring systems. Diabetes Care. 2024;47(1):67–74.
24. Brown A, Davis K, White L. Addressing algorithmic bias in cardiovascular risk prediction. Lancet Digital Health. 2023;5(9):e467–e475.
25. Wang G, Li X, Deng Z. AI-enhanced detection of lung nodules: A clinical evaluation of CT-based diagnostic systems. Eur Radiol. 2023;33(2):1789–1797.
26. Gupta A, Wang Y, Shankar S. Ensuring fairness in AI diagnostics: Addressing bias in training datasets. J Biomed Inform. 2022;129:104005.
27. Patel M, Joshi R, Arora K. Multi-omics machine learning for personalized drug response prediction. BMC Genomics. 2023;24(1):45.
28. Simmons S, Kang L, Blake D. Trustworthy AI in healthcare: Exploring explainability frameworks for clinical adoption. IEEE Trans Med Imaging. 2022;41(8):2015–2023.
29. Chen X, Gao Y, He Q. AI in drug discovery: Lessons learned from the COVID-19 pandemic. Curr Opin Pharmacol. 2022;67:102300.
30. Sharma P, Singh S, Kaur R. Regulatory considerations for AI-driven drug discovery. Nat Rev Drug Discov. 2023;22(3):182–185.
31. Lee J, Park H, Kim S. Wearable technology for diabetes management: AI-powered solutions. Diabetes Technol Ther. 2024;26(1):45–52.
32. Yoon H, Kang J, Choi M. Addressing cost and accessibility challenges in AI-based chronic disease management. Front Public Health. 2023;11:1095874.
33. Taylor L, Fairclough K, Harris M. Algorithmic bias in cardiovascular AI: Assessing impact and mitigation strategies. Heart. 2023;109(4):375–380.
34. Ahmed N, Barakat A, Rashid M. Data privacy in AI-powered health systems: A systematic review. Health Inf J. 2023;29(1):146045822311003.
35. Reynolds T, Cooper L, Zhang J. Interpretability in AI systems: Key strategies for improving transparency. J Med Syst. 2023;47(1):12.
Objavljeno
2025/11/19
Rubrika
Originalni rad / Original article