ANTIMICROBIAL ACTIVITY EVALUATION OF LYOPHILIZED JUICE AND WASTE EXTRACT OF RED CURRANT VARIETY REDPOLL

Antimicrobial activity of red currant lyophilizates

  • Maja Cvetković Medicinski fakultet, Univerzitet u Nišu
  • Tatjana Mihailov-Krstev Prirodno-matematički fakultet Univerzitet u Nišu
  • Katarina Šavikin Institut za proučavanje lekovitog bilja Dr Josif Pančić
  • Gordana Zdunić Institut za proučavanje lekovitog bilja Dr Josif Pančić
  • Dušanka Kitić Medicinski fakultet, Univerzitet u Nišu
  • Milica Ranđelović Medicinski fakultet, Univerzitet u Nišu
  • Dušica Stojanović Medicinski fakultet, Univerzitet u Nišu
  • Milica Milutinović Medicinski fakultet, Univerzitet u Nišu
  • Dušan Ilić
  • Bojana Miladinovic Katedra za farmaciju, Medicinski fakultet Univerziteta u Nišu
Keywords: red currants, Redpoll, antimicrobial activity, berries, preservatives

Abstract


Berries include a large number of species that are known for their nutritional and health benefits. Several studies have found that red currant has different biological properties, such as antiproliferative, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and antioxidant. The aim of this study was to investigate the antimicrobial activity of lyophilized fruit juice (RPJL) and waste extract (RPWL) obtained from red currant (Ribes rubrum L.) variety Redpoll on different Gram-positive (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Proteus mirabilis, Enterobacter aerogenes) and one yeast (Candida albicans). The activity of dominant active compounds (ascorbic acid, quercetin and kaempferol) contained in red currants under the same conditions were also examined to determine their responsibility in the antimicrobial effect. Tested RPJL and RPWL showed moderate antimicrobial activity. The minimum inhibitory (MIC) and microbicidal concentrations (MBC/MFC) of RPJL and RPWL were 100 mg/ml and more than 100 mg/ml. RPJL and RPWL have the same effect on Gram (+) bacteria and the same MIC and MBC value. RPWL showed stronger antimicrobial effects on Gram (-) bacteria while the juice did not inhibit the growth of the Gram (-) bacteria at all. Standard solutions of ascorbic acid and quercetin showed strong inhibitory and microbicidal activity at lower concentrations than tested samples with the MIC/MBC (MFC) =2.5−10 mg/ml. Results showed that red currants could have potential applications as natural antimicrobial agents.

References

Ali Mirani Z, Khan MN, Siddiqui A, Khan F, Aziz M, Naz S, et al. Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus. Iranian journal of basic medical sciences 2018; 21(2): 175–80. [CrossRef] [PubMed]

Aneta W, Jan O, Magdalena M, Joanna W. Phenolic profile, antioxidant and antiproliferative activity of black and red currants (Ribes spp.) from organic and conventional cultivation. International Journal of Food Science and Technology 2013; 48:715–726. [CrossRef]

Bendokas V, Šarkinas A, Jasinauskiene D, Anisimoviene N, Morkunaite-Haimi, Stanys V, et al. Antimicrobial activity of berries extracts of four Ribes species, their phenolic content and anthocyanin composition Folia Hort 2018; 30(2): 249-57. [CrossRef]

Benvenuti S, Pellati F, Melegari M, Bertelli D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science 2004; 69:C164–CC169. [CrossRef]

Brennan RM. Currant and gooseberries (Ribes L). In: Janick J, Paull RE (eds), The Encyclopedia of Fruit and Nut Crops. New York: CABI; 2005. p 191–295.

Burger O, Ofek I, Tabak M, Weiss EI, Sharon N, Neeman I. A high molecular mass constituent of cranberry juice inhibits Helicobacter pylori adhesion to human gastric mucus. FEMS Immunol Med Microbiol 2000; 29: 295-301. [CrossRef] [PubMed]

Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12(4): 564-82. [CrossRef] [PubMed]

Cvetković M, Ilić D, Petrović S, Miladinović B. Determination of mineral composition of the Red Pool type of red currant (Ribes rubrum L, Grossulariaceae). Archives of Pharmacy 2021; 71(Suppl 5):S66-S66.

Da Silva Pinto ADS, Kwon YI, Apostolidis E, Lajolo FM, Genovese MI, Shetty K. Evolution of red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) for potential management of type 2 diabetes and hypertension using in vitro models. J Food Biochem 2010; 34: 639-660. [CrossRef]

De Pascual-Teresa S, Sanchez-Ballesta MT. Anthocyanins: from plant to health. Phytochem Rev 2008; 7:281-299. [CrossRef]

Dey TB, Chakraborty S, Jain KK, Sharma A, Kuhad RC. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci Technol 2016; 53: 60–74. [CrossRef] [PubMed]

Djordjevic B, Šavikin K, Zdunić G, Janković T, Vulić T, Oparnica Č,  et al. Biochemical Properties of Red Currant Varieties in Relation to Storage. Plant Foods Hum Nutr 2010; 65: 326–32. [CrossRef] [PubMed]

Folmer F, Basavaraju U, Jaspar M, Hold G, El-Omar E, Dicato M, et al. Anticancer effects of bioactive berry compounds, Phytochem Rev 2014; 13:295–322. [CrossRef]

Frum A, Georgescu C, Gligor F, Dobrea C, Tița O. Identification and Quantification of Phenolic Compounds from Red Currant (Ribes rubrum L.) and Raspberries (Rubus idaeus L.). International Journal of Pharmacology, Phytochemistry and Ethnomedicine 2017; 6:30-37. [CrossRef]

Gatto MT, Falcocchio S, Grippa E, Mazzanti G, Battinelli L, Nicolosi G, et al. Antimicrobial and anti-lipase activity of quercetin and its C2-C163-O-acyl-esters. Bioorg Med Chem 2002; 10: 269-72. [CrossRef] [PubMed]

Heinonen M. Antioxidant activity and antimicrobial effect of berry phenolics – a Finnish perspective. Mol Nutr Food Res 2007; 51(6):684–691. [CrossRef] [PubMed]

Howell AB. Cranberry proanthocyanidins and the maintenance of urinary tract health. Crit Rev Food Sci Nutr 2002; 42: 273-8. [CrossRef] [PubMed]

Hummer K, Barney D. Crop reports: currants. Hort Technology 2002; 12, 377–387. [CrossRef]

Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2000; 2(2):189-98. [CrossRef] [PubMed]

Kovacevic N. Osnovi farmakognozije, Beograd: Srpska skolska knjiga; 2004.

Kranz S, Guellmar A, Olschowsky P, Tonndorf-Martini S,  Heyder M, Pfister W, et al. Antimicrobial Effect of Natural Berry Juices on Common Oral Pathogenic Bacteria. Antibiotics 2020; 9(9): 533. [CrossRef] [PubMed]

Liegiūtė S, Majienė D, Trumbeckaitė S, Liobikas J, Bendokas V, Stanys V, et al. Anthocyanin composition and antimicrobial activity of sour cherry (Prunus cerasus L.) fruit extracts. Zemdirbyste 2006; 96:141-148.

Liu Y, Black MA, Caron L, Camesano TA. Role of cranberry juice on molecular-scale surface characteristics and adhesion behavior of Escherichia coli. Biotechnol Bioeng 2006; 93: 297-305. [CrossRef] [PubMed]

Mihajilov-Krstev T. Hemijski sastav i antimikrobna aktivnost etarskih ulja biljnih vrsta roda Satureja L. Doktorska disertacija. Novi Sad: Prirodno-matematčki fakultet. Univerzitet u Novom Sadu; 2009.

Mišić D, Nikolić D.  Jagodaste voćke, izd. Institut za istraživanja u poljoprivredi "Srbija", Beograd; 2003

Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad AE. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry 2002; 50: 519–25. [CrossRef] [PubMed]

National Committee for Clinical Laboratory Standards (NCCLS). 2003. Performance standards for anti-microbial susceptibility testing: eleventh informational supplement. Document M100- S11. Wayne, Pa.: National Committee for Clinical Laboratory Standard

Nohynek LJ, Alakomi HL, Kähkönen MP, Heinonen M, Helander IM, Oksman-Caldentey KM, et al. Berry phenolics – antimicrobial properties and mechanisms of action against severe human pathogens. Nutr Cancer 2006; 54(1): 18 – 32. [CrossRef] [PubMed]

Nour V, Trandafir I, Ionica ME. Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Fruits 2011; 66: 353-62. [CrossRef]

Pirjo HM, Jarkko H, Saila K, Juha MP, Merja V. High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Food Chem 2016; 204: 14-20. [CrossRef] [PubMed]

Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, et al. Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 2001; 90: 494 – 507. [CrossRef] [PubMed]

Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, et al. Listeria-review of epidemiology and pathogenesis. J Microbiol Immunol Infect 2007; 40(1):4-13. [PubMed]

Rotundo A, Bounous G, Benvenuti S, Vampa G, Melegari M, Soragni F. Quality and yield of Ribes and Rubus cultivars grown in Southern Italy hilly location. Phytother Res 1998; 12(S1): 135-7. [CrossRef] [PubMed]

Sartoratto A, Machado ALM, Delarmelina C, Figueira GM, Duarte MCT, Rehder VLG. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol 2004; 35:275–80. [CrossRef]

Shahidi F, Naczk M. Food Phenolics. Sources, Chemistry, Effects, Applications. Lancaster, PA: Technomic Publishing Co, Inc; 1995.

Talcott ST. Chemical components of berry fruits. In: Zhao Y (ed), Fruit, Value-Added Products for Health Promotion. USA: CRC, Taylor and Francis Group; 2007. p 51–72. [CrossRef]

Teffo LS, Aderogba MA, Eloff JN. Antibacterial and antioxidant activities of four kaempferol methyl ethers isolated from Dodonaea viscosa Jacq. var. angustifolia leaf extracts. South African Journal of Botany 2010; 76: 25–9. [CrossRef]

Tsuda T, Horio F, Uchida K, Aoki H, Osawa T. Dietary Cyanidin 3-O-D-Glucoside-Rich Purple Corn Color Prevents Obesity and Ameliorates Hyperglycemia in Mice. J Nutr 2003; 133: 2125–30. [CrossRef] [PubMed]

Tulipani S, Mezzetti B, Capocasa F,  Bompadre S, Beekwilder J,  Ric de Vos HC, et al.  Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. Journal of Agricultural and Food Chemistry 2008; 56: 696‑704.  [CrossRef] [PubMed]

WHO, 2020 https://www.who.int/news-room/fact-sheets/detail/food-safety

Yamanaka A, Kimizuka R, Kato T, Okuda K. Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol Immunol 2004; 19: 150-154. [CrossRef] [PubMed]

Published
2023/06/16
Section
Original article