MATRIX METALLOPROTEINASES: IMPORTANT PARTICIPANTS IN EVERY STEP OF TUMOR DEVELOPMENT AND PROMISING TARGETS IN MODERN ANTITUMOR THERAPIES

  • Simonida Stojanović Visoka medicinska škola strukovnih studija "Milutun Milanković" Beograd
Keywords: matrix metalloproteinases, tumor microenvironment, stem cells, angiogenesis, invasion

Abstract


Matrix metalloproteinases are proteolytic enzymes that are able to cleave almost all components of extracellular matrix as well as many other soluble and membrane attached molecules of very diverse nature. Their proteolytic activity is crucial for embryogenesis, tissue development, remodeling and organisation. As important as in physiological processes, they play crucial role in tumor development, progression, tissue invasion and metastasis.

In this review, we discuss complex involvement of these zinc-dependent endopeptidases in every step of tumor development and progression. We highlight the importance of collaboration between tumor cells and tumor microenvironment at different levels of tumor development and spreading. We also emphasize the importance of inhibition of certain matrix metaloproteinases (depending on tumor type and stage) in order to support cytostatic therapy. 

References

Acuff HB, Carter KJ, Fingleton B, Gorden DL, Matrisian LM. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res.2006;66(1):259-66. [CrossRef] [PubMed]

Arroyo AG, Genís L, Gonzalo P, Matías-Román S, Pollán A, Gálvez BG. Matrix metalloproteinases: new routes to the use of MT1-MMP as a therapeutic target in angiogenesis-related disease. Curr Pharm Des 2007; 13(17): 1787-802. [CrossRef] [PubMed]

Azevedo Martins JM, Rabelo-Santos SH, do Amaral Westin MC, Zeferino LC. Tumoral and stromal expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in cervical cancer patient survival: a competing risk analysis. BMC Cancer 2020;20(1):660. [CrossRef] [PubMed]

Blanco MJ, Rodríguez-Martín I, Learte AIR, Clemente C, Montalvo MG, Seiki M et al. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo. PLoS One 2017;12(9):e0184767. [CrossRef] [PubMed]

Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020;21(24):9739. [CrossRef] [PubMed]

De Vicente JC, Lequerica-Fernández P, Santamaría J, Fresno MF. Expression of MMP-7 and MT1-MMP in oral squamous cell carcinoma as predictive indicator for tumor invasion and prognosis. J Oral Pathol Med 2007; 36(7): 415-24. [CrossRef] [PubMed]

Eiden C, Ungefroren H. The Ratio of RAC1B to RAC1 Expression in Breast Cancer Cell Lines as a Determinant of Epithelial/Mesenchymal Differentiation and Migratory Potential. Cells 2021;10(2):351. [CrossRef] [PubMed]

Escaff S, Fernández JM, González LO, Suárez A, González-Reyes S, González JM et al. Study of matrix metalloproteinases and their inhibitors in prostate cancer. Br J Cancer 2010; 102(5): 922-9. [CrossRef] [PubMed]

Falconer  RA, Loadman  PM. Membrane-type matrix metalloproteinases: expression, roles in metastatic prostate cancer progression and opportunities for drug targeting. J Cancer Metastasis Treat 2017;3:315-27. [CrossRef]

Genís L, Gálvez BG, Gonzalo P, Arroyo AG. MT1-MMP: universal or particular player in angiogenesis? Cancer Metastasis Rev 2006; 25(1):77-86. [CrossRef] [PubMed]

Giavazzi R, Garofalo A, Ferri C, Lucchini V, Bone EA, Chiari S et al.  Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian carcinoma xenografts. Clin Cancer Res. 1998; 4(4):985-92. [PubMed]

Gill JH, Kirwan IG, Seargent JM, Martin SW, Tijani S, Anikin VA et al. MMP-10 is overexpressed, proteolytically active, and a potential target for therapeutic intervention in human lung carcinomas. Neoplasia 2004; 6(6):777-85. [CrossRef] [PubMed]

Gong Y, Chippada-Venkata UD, Oh WK. Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel) 2014; 6(3): 1298-327.  [CrossRef] [PubMed]

Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 2013;25(2):254-64. [CrossRef] [PubMed]

Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim Biophys Acta Mol Cell Res 2017;1864(11 Pt A):2043-55. [CrossRef] [PubMed]

Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P. Role of Cadherins in Cancer-A Review. Int J Mol Sci 2020;21(20):7624. [CrossRef] [PubMed]

Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010;141(1):52-67. [CrossRef] [PubMed]

Kessenbrock K, Wang CY, Werb Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol 2015;44-46:184-90. [CrossRef] [PubMed]

Khan YH, Uttra AM, Qasim S, Mallhi TH, Alotaibi NH, Rasheed M, et al. Potential Role of Phytochemicals Against Matrix Metalloproteinase Induced Breast Cancer; An Explanatory Review. Front Chem 2021; 8:592152. [CrossRef] [PubMed]

Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP et al. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci  2017;18(12):2589. [CrossRef] [PubMed]

Kolijn K, Verhoef EI, van Leenders GJ. Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer. Oncotarget 2015;6(27):24488-98. [CrossRef] [PubMed]

Lang SH, Frame FM, Collins AT. Prostate cancer stem cells. J Pathol 2009;217(2):299-306. [CrossRef] [PubMed]

Li S, Pritchard DM, Yu L-G. Regulation and Function of Matrix Metalloproteinase-13 in Cancer Progression and Metastasis. Cancers 2022; 14(13):3263. [CrossRef] [PubMed]

Liu H, Kato Y, Erzinger SA, Kiriakova GM, Qian Y, Palmieri D, et al. The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer 2012; 12: 583. [CrossRef] [PubMed]

Liu J, Khalil RA. Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. Prog Mol Biol Transl Sci 2017; 148: 355-420. [CrossRef] [PubMed]

Liu J, Khalil RA. Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. Prog Mol Biol Transl Sci 2017;148:355-420. [CrossRef] [PubMed]

Mannello F, Tonti GA, Bagnara GP, Papa S. Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. Stem Cells 2006;24(3):475-81. [CrossRef] [PubMed]

Mariya T, Hirohashi Y, Torigoe T, Tabuchi Y, Asano T, Saijo H et al. Matrix metalloproteinase-10 regulates stemness of ovarian cancer stem-like cells by activation of canonical Wnt signaling and can be a target of chemotherapy-resistant ovarian cancer. Oncotarget 2016; 7(18): 26806-22. [CrossRef] [PubMed]

Maybee DV, Ink NL, Ali MAM. Novel Roles of MT1-MMP and MMP-2: Beyond the Extracellular Milieu. Int J Mol Sci 2022;23(17):9513. [CrossRef] [PubMed]

Melzer C, Hass R, Lehnert H, Ungefroren H. RAC1B: A Rho GTPase with Versatile Functions in Malignant Transformation and Tumor Progression. Cells.2019;8(1):21. [CrossRef] [PubMed]

Méndez-López LF. Revisiting Epithelial Carcinogenesis. Int J Mol Sci. 2022; 23(13):7437. [CrossRef] [PubMed]

Muñoz-Sáez E, Moracho N, Learte AIR, Arroyo AG, Sánchez-Camacho C. Dynamic Expression of Membrane Type 1-Matrix Metalloproteinase (Mt1-mmp/Mmp14) in the Mouse Embryo. Cells 2021;10(9):2448. [CrossRef] [PubMed]

Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000;18(5):1135-49. [CrossRef] [PubMed]

Palavalli LH, Prickett TD, Wunderlich JR, Wei X, Burrell AS, Porter-Gill P et al. Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat Genet 2009;41(5):518-20. [CrossRef] [PubMed]

Pang L, Li Q, Li S, He J, Cao W, Lan J et al. Membrane type 1-matrix metalloproteinase induces epithelial-to-mesenchymal transition in esophageal squamous cell carcinoma: Observations from clinical and in vitro analyses. Sci Rep 2016;6: 22179. [CrossRef] [PubMed]

Piskór BM, Przylipiak A, Dąbrowska E, Niczyporuk M, Ławicki S. Matrilysins and Stromelysins in Pathogenesis and Diagnostics of Cancers. Cancer Manag Res 2020; 12: 10949-64. [CrossRef] [PubMed]

Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J et al. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front Oncol 2019; 9: 1370. [CrossRef] [PubMed]

Radisky DC, Bissell MJ. Matrix metalloproteinase-induced genomic instability. Curr Opin Genet Dev 2006;16(1):45-50. [CrossRef] [PubMed]

Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005;436(7047):123-7. [CrossRef] [PubMed]

Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC. Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. J Cell Biochem 2017;118(11):3531-48. [CrossRef] [PubMed]

Rydlova M, Holubec L Jr, Ludvikova M Jr, Kalfert D, Franekova J, Povysil C et al. Biological activity and clinical implications of the matrix metalloproteinases. Anticancer Res 2008;28(2B):1389-97.  [PubMed]

Sarper M, Allen MD, Gomm J, Haywood L, Decock J, Thirkettle S et al. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res 2017;19(1):33. [CrossRef] [PubMed]

Sawey ET, Johnson JA, Crawford HC. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc Natl Acad Sci U S A 2007;104(49):19327-32. [CrossRef] [PubMed]

Silk N, Reich J, Sinha R, Chawla S, Geary K, Zhang D. The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment. J Xenobiot 2021;11(1):16-32. [CrossRef] [PubMed]

Song Y, Ye M, Zhou J, Wang ZW, Zhu X. Restoring E-cadherin Expression by Natural Compounds for Anticancer Therapies in Genital and Urinary Cancers. Mol Ther Oncolytics 2019;14:130-138. [CrossRef] [PubMed]

Sun Y, Jing J, Xu H, Xu L, Hu H, Tang C et al. N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J Immunother Cancer 2021;9(3):e002138. [CrossRef] [PubMed]

Verma D, Zanetti C, Godavarthy PS, Kumar R, Minciacchi VR, Pfeiffer J et al.  Bone marrow niche-derived extracellular matrix-degrading enzymes influence the progression of B-cell acute lymphoblastic leukemia. Leukemia 2020; 34(6):1540-52. [CrossRef] [PubMed]

Wang X, Page-McCaw A. A matrix metalloproteinase mediates long-distance attenuation of stem cell proliferation. J Cell Biol 2014;206(7):923-36. [CrossRef] [PubMed]

Yosef G, Arkadash V, Papo N. Targeting the MMP-14/MMP-2/integrin αvβ3 axis with multispecific N-TIMP2-based antagonists for cancer therapy. J Biol Chem 2018; 293(34): 13310-26. [CrossRef] [PubMed]

Yu XF, Han ZC. Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. Histol Histopathol 2006; 21(5): 519-31. [CrossRef] [PubMed]

Published
2023/06/16
Section
Review article