CD4+ T CELL PROFILES IN AUTOIMMUNE HEMOLYTIC ANEMIA

  • Miloš S Kostić Univerzitet u Nišu, Medicinski fakultet, Katedra za mikrobiologiju i imunologiju, Bul. dr Zorana Đinđića 81, 18000 Niš, Srbija
  • Nikola Živković
  • Ana Cvetanović
Keywords: autoimmune hemolytic anemia, red blood cells, Th1 cells, Th2 cells, Th17 cells, Treg cells, Tfh cells

Abstract


Autoimmune hemolytic anemia (AIHA) is an immune-mediated disorder characterized by the reduced lifespan of red blood cells (RBCs) due to enhanced intravascular and extravascular destruction. Traditionally, the immunopathogenesis of AIHA has been considered in the context of the immunological tolerance breakdown of B cells, since the autoantibodies are the main disease mediators. However, more recent data suggest that the production of anti-RBC antibodies by B cells is only an epiphenomenon and that the tolerance breakdown in the CD4+ T cell compartment is a key point in early AIHA development. In AIHA, there are numerical and functional alterations of the essential CD4+ T cell subpopulations, including Th1, Th2, Th17, regulatory T cells and follicular helper T cells. In this review, the main characteristics of the cellular immune response during the development of AIHA, as well as the potential mechanisms by which CD4+ T cells promote the initiation and maintenance of the autoimmune process, are summarized. Identification of these characteristics and mechanisms would be of practical importance in the therapeutic sense because it opens up the possibility of designing more specific immunotherapy that is still not available for AIHA patients.

References

Ahmad E, Elgohary T, Ibrahim H. Naturally occurring regulatory T cells and interleukins 10 and 12 in the pathogenesis of idiopathic warm autoimmune hemolytic anemia. J Investig Allergol Clin Immunol 2011;21(4):297-304. [PubMed]

Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, de Oliveira Araujo IB, Berti E, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022;36(7):1720-48. [CrossRef][PubMed]

Barcellini W, Clerici G, Montesano R, Taioli E, Morelati F, Rebulla P, et al. In vitro quantification of anti-red blood cell antibody production in idiopathic autoimmune haemolytic anaemia: effect of mitogen and cytokine stimulation. Br J Haematol 2000;111(2):452-60. [CrossRef][PubMed]

Barcellini W, Zaja F, Zaninoni A, Imperiali FG, Battista ML, Di Bona E et al. Low-dose rituximab in adult patients with idiopathic autoimmune hemolytic anemia: clinical efficacy and biologic studies. Blood 2012;119(16):3691-7. [CrossRef][PubMed]

Barcellini W. New Insights in the Pathogenesis of Autoimmune Hemolytic Anemia. Transfus Med Hemother 2015;42(5):287-93. [CrossRef][PubMed]

Barker RN, Hall AM, Standen GR, Jones J, Elson CJ. Identification of T-cell epitopes on the Rhesus polypeptides in autoimmune hemolytic anemia. Blood 1997;90(7):2701-15. [CrossRef][PubMed]

Berentsen S, Sundic T. Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy. Biomed Res Int 2015;2015:363278. [CrossRef][PubMed]

Bhaumik S, Basu R. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response. Front Immunol 2017;8:254. [CrossRef][PubMed]

Brugnara C, Berentsen S. Cold agglutinin disease [Internet]. Waltham, MA: Wolters Kluwer; 2023. “cited 2023 April 5”. Available from: URL: https://www.uptodate.com/contents/cold-agglutinin-disease.

Bu X, Zhang T, Wang C, Ren T, Wen Z. IL-33 reflects dynamics of disease activity in patients with autoimmune hemolytic anemia by regulating autoantibody production. J Transl Med 2015;13:381. [CrossRef][PubMed]

Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022;156:155891. [CrossRef][PubMed]

Chadebech P, Michel M, Janvier D, Yamada K, Copie-Bergman C, Bodivit G et al. IgA-mediated human autoimmune hemolytic anemia as a result of hemagglutination in the spleen, but independent of complement activation and FcαRI. Blood 2010;116(20):4141-7. [CrossRef][PubMed]

Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4+ T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020;22(1):73. [CrossRef][PubMed]

Clynes R, Ravetch JV. Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 1995;3(1):21-6. [CrossRef][PubMed]

Cooling LL. Kids, colds, and complement: paroxysmal cold hemoglobinuria. Transfusion 2017;57(6):1332-5. [CrossRef][PubMed]

Ding T, Su R, Wu R, Xue H, Wang Y, Su R et al. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front Immunol 2021;12:641013. [CrossRef][PubMed]

Fagiolo E, Terenzi CT. Enhanced IL-10 production in vitro by monocytes in autoimmune haemolytic anaemia. Immunol Invest 1999;28(5-6):347-52. [CrossRef][PubMed]

Fagiolo E, Toriani-Terenzi C. Th1 and Th2 cytokine modulation by IL-10/IL-12 imbalance in autoimmune haemolytic anaemia (AIHA). Autoimmunity 2002;35(1):39-44. [CrossRef][PubMed]

Fattizzo B, Barcellini W. Autoimmune hemolytic anemia: causes and consequences. Expert Rev Clin Immunol 2022;18(7):731-45. [CrossRef][PubMed]

Fattizzo B, Giannotta JA, Serpenti F, Barcellini W. Difficult Cases of Autoimmune Hemolytic Anemia: A Challenge for the Internal Medicine Specialist. J Clin Med 2020;9(12):3858. [CrossRef][PubMed]

Fattizzo B, Michel M, Zaninoni A, Giannotta J, Guillet S, Frederiksen H et al. Efficacy of recombinant erythropoietin in autoimmune hemolytic anemia: a multicenter international study. Haematologica 2021;106(2):622-5. [CrossRef][PubMed]

Fattizzo B, Zaninoni A, Gianelli U, Zanella A, Cortelezzi A, Kulasekararaj AG, et al. Prognostic impact of bone marrow fibrosis and dyserythropoiesis in autoimmune hemolytic anemia. Am J Hematol 2018;93(4):E88-E91. [CrossRef][PubMed]

Fries LF, Brickman CM, Frank MM. Monocyte receptors for the Fc portion of IgG increase in number in autoimmune hemolytic anemia and other hemolytic states and are decreased by glucocorticoid therapy. J Immunol 1983;131(3):1240-5. [CrossRef][PubMed]

Gao Y, Jin H, Nan D, Yu W, Zhang J, Yang Y, et al. The Role of T Follicular Helper Cells and T Follicular Regulatory Cells in the Pathogenesis of Autoimmune Hemolytic Anemia. Sci Rep 2019;9(1):19767. [CrossRef][PubMed]

Garratty G. Drug-induced immune hemolytic anemia. Hematology Am Soc Hematol Educ Program 2009:73-9. [CrossRef][PubMed]

Gassner FJ, Weiss L, Geisberger R, Hofbauer JP, Egle A, Hartmann TN et al. Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia. Cancer Immunol Immunother 2011;60(1):75-85. [CrossRef][PubMed]

Hall AM, Zamzami OM, Whibley N, Hampsey DP, Haggart AM, Vickers MA, et al. Production of the effector cytokine interleukin-17, rather than interferon-γ, is more strongly associated with autoimmune hemolytic anemia. Haematologica 2012;97(10):1494-500. [CrossRef][PubMed]

He HS, Xie YH. Change and significance of Th17 cells and its secretive IL-17 in patients with autoimmune hemolytic anemia. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2011;27(6):662-3. [PubMed]

Huang Y, Chen Z, Wang H, Ba X, Shen P, Linet W al. Follicular regulatory T cells: a novel target for immunotherapy?. Clin Transl Immunology 2020;9(2):e1106. [CrossRef][PubMed]

Hudson KE, Hendrickson JE, Cadwell CM, Iwakoshi NN, Zimring JC. Partial tolerance of autoreactive B and T cells to erythrocyte-specific self-antigens in mice. Haematologica 2012;97(12):1836-44. [CrossRef][PubMed]

Johnston RJ, Choi YS, Diamond JA, Yang JA, Crotty S. STAT5 is a potent negative regulator of TFH cell differentiation. J Exp Med 2012;209(2):243-50. [CrossRef][PubMed]

Kalfa TA. Warm antibody autoimmune hemolytic anemia. Hematology Am Soc Hematol Educ Program 2016;2016(1):690-7. [CrossRef][PubMed]

Kim JR, Lim HW, Kang SG, Hillsamer P, Kim CH. Human CD57+ germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination. BMC Immunol 2005;6:3. [CrossRef][PubMed]

Kruizinga MD, van Tol MJD, Bekker V, Netelenbos T, Smiers FJ, Bresters D et al. Risk Factors, Treatment, and Immune Dysregulation in Autoimmune Cytopenia after Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Patients. Biol Blood Marrow Transplant 2018;24(4):772-8. [CrossRef][PubMed]

Kuk JS, Maceachern JA, Soamboonsrup P, McFarlane A, Benger A, Patterson W et al. Chronic eosinophilic leukemia presenting with autoimmune hemolytic anemia and erythrophagocytosis by eosinophils. Am J Hematol 2006;81(6):458-61. [CrossRef][PubMed]

Li Z, Shao Z, Xu Y, Shen L, Chen G, Zhang Y, et al. Subclasses of warm autoantibody IgG in patients with autoimmune hemolytic anemia and their clinical implications. Chin Med J (Engl) 1999;112(9):805-8. [CrossRef][PubMed]

Liu Y, Wan S, Sun X, Zhang W,HE J, Liu C. Effect of Follicular Helper T Cells on the Pathogenesis of Autoimmune Hemolytic Anemia. Labeled Immunoassays and Clinical Medicine 2016;23(2):126-8.

Long H, Liao W, Wang L, Lu Q. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System. Transfus Med Hemother 2016;43(2):96-108. [CrossRef][PubMed]

Malisan F, Brière F, Bridon JM, Harindranath N, Mills FC, Max EE et al. Interleukin-10 induces immunoglobulin G isotype switch recombination in human CD40-activated naive B lymphocytes. J Exp Med 1996;183(3):937-47. [CrossRef][PubMed]

Maly K, Schirmer M. The story of CD4+ CD28- T cells revisited: solved or still ongoing? J Immunol Res 2015;2015:348746. [CrossRef][PubMed]

Mayer B, Yürek S, Kiesewetter H, Salama A. Mixed-type autoimmune hemolytic anemia: differential diagnosis and a critical review of reported cases. Transfusion 2008;48(10):2229-34. [CrossRef][PubMed]

Moens L, Tangye SG. Cytokine-Mediated Regulation of Plasma Cell Generation: IL-21 Takes Center Stage. Front Immunol 2014;5:65. [CrossRef][PubMed]

Mqadmi A, Zheng X, Yazdanbakhsh K. CD4+CD25+ regulatory T cells control induction of autoimmune hemolytic anemia. Blood 2005;105(9):3746-8. [CrossRef][PubMed]

Mullins GN, Valentine KM, Al-Kuhlani M, Davini D, Jensen KDC, Hoyer KK. T cell signaling and Treg dysfunction correlate to disease kinetics in IL-2Rα-KO autoimmune mice. Sci Rep 2020;10(1):21994. [CrossRef][PubMed]

Munawara U, Small AG, Quach A, Gorgani NN, Abbott CA, Ferrante A. Cytokines regulate complement receptor immunoglobulin expression and phagocytosis of Candida albicans in human macrophages: A control point in anti-microbial immunity. Sci Rep 2017;7(1):4050. [CrossRef][PubMed]

Oliveira GG, Holton J, Lydyard PM. Long-term treatment of NZB mice with anti-CD4 results in wasting disease, lymphoid atrophy and chronic diarrhea. Gut Microbes 2010;1(5):345-55. [CrossRef][PubMed]

Oliveira GG, Hutchings PR, Lydyard PM. Anti-CD4 treatment of NZB mice prevents the development of erythrocyte autoantibodies but hastens the appearance of anaemia. Immunol Lett 1994;39(2):153-6. [CrossRef][PubMed]

Oliveira GG, Hutchings PR, Roitt IM, Lydyard PM. Production of erythrocyte autoantibodies in NZB mice is inhibited by CD4 antibodies. Clin Exp Immunol 1994;96(2):297-302. [CrossRef][PubMed]

Perry FE, Barker RN, Mazza G, Day MJ, Wells AD, Shen CR et al. Autoreactive T cell specificity in autoimmune hemolytic anemia of the NZB mouse. Eur J Immunol 1996;26(1):136-41. [CrossRef][PubMed]

Pricop L, Redecha P, Teillaud JL, Frey J, Fridman WH, Sautès-Fridman C, et al. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. J Immunol 2001;166(1):531-7. [CrossRef][PubMed]

Qi H. T follicular helper cells in space-time. Nat Rev Immunol 2016;16(10):612-25. [CrossRef][PubMed]

Rasquinha MT, Sur M, Lasrado N, Reddy J. IL-10 as a Th2 Cytokine: Differences Between Mice and Humans. J Immunol 2021;207(9):2205-15. [CrossRef][PubMed]

Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The Complex Role of Regulatory T Cells in Immunity and Aging. Front Immunol 2021;11:616949. [CrossRef][PubMed]

Romagnani S. Th1 and Th2 in human diseases. Clin Immunol Immunopathol 1996;80(3 Pt 1):225-35. [CrossRef][PubMed]

Sage PT, Sharpe AH. T follicular regulatory cells. Immunol Rev 2016;271(1):246-59. [CrossRef][PubMed]

Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 2012;3:51. [CrossRef][PubMed]

Sokol RJ, Booker DJ, Stamps R, Booth JR, Hook V. IgA red cell autoantibodies and autoimmune hemolysis. Transfusion 1997;37(2):175-81. [CrossRef][PubMed]

Soler NG, Bencomo HA, Aquino RS, Romero DY. Specificities and isotypes of erythrocytes autoantibodies in patients with warm autoimmune hemolytic anemia. Rev Cubana Hematol Immunol Hemoter 2020;36(4):1-23.

Spencer LA, Weller PF. Eosinophils and Th2 immunity: contemporary insights. Immunol Cell Biol 2010;88(3):250-6. [CrossRef][PubMed]

Sutterwala FS, Noel GJ, Salgame P, Mosser DM. Reversal of proinflammatory responses by ligating the macrophage Fcgamma receptor type I. J Exp Med 1998;188(1):217-22. [CrossRef][PubMed]

Sweidan AJ, Brys AK, Sohn DD, Sheth MR. Diagnostic and therapeutic considerations in idiopathic hypereosinophilia with warm autoimmune hemolytic anemia. J Blood Med 2015;6:257-60. [CrossRef][PubMed]

Tamura J, Jinbo T, Murata N, Itoh K, Murakami H, Take H et al. Autoimmune hemolytic anemia with eosinophilia in elderly patient. Nihon Ronen Igakkai Zasshi 1996;33(8):603-6. [CrossRef][PubMed]

te Velde AA, Huijbens RJ, de Vries JE, Figdor CG. IL-4 decreases Fc gamma R membrane expression and Fc gamma R-mediated cytotoxic activity of human monocytes. J Immunol 1990;144(8):3046-51. [CrossRef][PubMed]

Teigler J, Low J, Rose S, Cahir-Mcfarland E, Yednock T, Kroon H et al. Evidence of Classical Complement Pathway Involvement in a Subset of Patients with Warm Autoimmune Hemolytic Anemia. Blood 2021;138(Suppl 1):2001. [CrossRef]

Toriani-Terenzi C, Fagiolo E. IL-10 and the cytokine network in the pathogenesis of human autoimmune hemolytic anemia. Ann N Y Acad Sci 2005;1051:29-44. [CrossRef][PubMed]

Toriani-Terenzi C, Pozzetto U, Bianchi M, Fagiolo E. Cytokine network in autoimmune haemolytic anaemia: new probable targets for therapy. Cancer Detect Prev 2002;26(4):292-8. [CrossRef][PubMed]

Valentine KM, Davini D, Lawrence TJ, Mullins GN, Manansala M, Al-Kuhlani M et al. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease. J Immunol 2018;201(1):31-40. [CrossRef][PubMed]

Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol 2019;106(2):345-58. [CrossRef][PubMed]

Wei J, Zhao J, Schrott V, Zhang Y, Gladwin M, Bullock G, et al. Red Blood Cells Store and Release Interleukin-33. J Investig Med 2015;63(6):806-10. [CrossRef][PubMed]

Xu L, Zhang T, Liu Z, Li Q, Xu Z, Ren T. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol 2012;40(12):994-1004.e4. [CrossRef][PubMed]

Youssef SR, Elsalakawy WA. First report of expansion of CD4+/CD28 null T-helper lymphocytes in adult patients with idiopathic autoimmune hemolytic anemia. Hematol Transfus Cell Ther 2021;43(4):396-401. [CrossRef][PubMed]

Zaninoni A, Fattizzo B, Giannotta J, Fermo E, Bianchi P, Cecchi N, et al. p1526: Autoimmune hemolytic anemias: relationship between single nucleotide polymorphisms of cytokine genes and clinical/hematological parameters. Hemasphere 2022;6(suppl):1407-8. [CrossRef][PubMed]

Zhang Y, Chu Y, Shao Z. The clinical implications of IgG subclass in 84 patients with autoimmune hemolytic anemia. Zhonghua Xue Ye Xue Za Zhi 1999;20(10):524-6. [PubMed]

Zhu Q, Rui K, Wang S, Tian J. Advances of Regulatory B Cells in Autoimmune Diseases. Front Immunol 2021;12:592914. [CrossRef][PubMed]

Published
2024/04/10
Section
Review article