ASSOCIATION OF THE GENETIC POLYMORPHISM RS11640851 MT1A 80 C/A AND TYPE 2 DIABETES MELLITUS IN THE CENTRAL BALKAN POPULATION

  • Stevan Vujić Medicinski fakultet Niš
  • Jelena Milenković Medicinski fakultet Univerziteta u Nišu
  • Tatjana Jevtović Stoimenov Medicinski fakultet Univerziteta u Nišu
  • Aleksandra Klisić Dom zdravlja, Podgorica
Keywords: type 2 diabetes, metallothionein, zinc, single nucleotide polymorphism

Abstract


Type 2 diabetes mellitus (T2DM) is the most common type of diabetes and is becoming an increasingly prevalent global health issue. Polymorphisms in genes coding metallothioneins, a group of small zinc-binding proteins that participate in antioxidative protection, are believed to be involved in T2DM pathogenesis. This study aimed to investigate the potential association of the single nucleotide polymorphism (SNP) rs11640851 MT1A 80 C/A and the T2DM risk and to determine the impact of the genotype and allelic distribution on the diabetes-related biochemical parameters. The study included 298 subjects, 112 with T2DM and 186 healthy, non-diabetic controls. The participants' fasting glycemia and HbA1c levels were measured, while the SNP in the MT1A gene was determined using the PCR-RFLP method. There were no significant differences in the genetic distribution and allele frequency between control subjects and diabetic patients (p > 0.05). There was likewise no association between the SNP and diabetes-associated laboratory parameters, fasting serum glucose and HbA1c levels. However, 79.6% of allele C carriers had fasting glucose levels above 7 mmol/L, versus 53.3% of subjects homozygous for allele A (p = 0.005). Although our study did not find a direct association between the MT1A genetic variants and the occurrence of T2DM, we observed an effect of the allele C on glycemic control in the patients. Further research in a larger population is needed to expand these findings and to improve the understanding of metallothionein genes and their impact on the development of T2DM. 

References

Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants (Basel) 2021;10(1):89. [CrossRef] [PubMed]

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014;37 Suppl 1: S81-90. [CrossRef] [PubMed]

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J 2016;24(5):547-53. [CrossRef] [PubMed]

Cai L, Wang J, Li Y, Sun X, Wang L, Zhou Z, et al. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 2005;54(6):1829-37. [CrossRef] [PubMed]

Cipriano C, Malavolta M, Costarelli L, Giacconi R, Muti E, Gasparini N, et al. Polymorphisms in MT1a gene coding region are associated with longevity in Italian Central female population. Biogerontology 2006;7(5-6):357-65. [CrossRef] [PubMed]

Cong W, Niu C, Lv L, Ni M, Ruan D, Chi L, et al. Metallothionein Prevents Age-Associated Cardiomyopathy via Inhibiting NF-κB Pathway Activation and Associated Nitrative Damage to 2-OGD. Antioxid Redox Signal 2016;25(17):936-52. [CrossRef] [PubMed]

Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell Mol Life Sci 2002;59(4):627-47. [CrossRef] [PubMed]

Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med 2021;171(2):179-89. [CrossRef] [PubMed]

Dascalu AM, Anghelache A, Stana D, Costea AC, Nicolae VA, Tanasescu D, et al. Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp Ther Med 2022;23(5):324. [CrossRef] [PubMed]

Dong F, Li Q, Sreejayan N, Nunn JM, Ren J. Metallothionein prevents high-fat diet induced cardiac contractile dysfunction: role of peroxisome proliferator activated receptor gamma coactivator 1alpha and mitochondrial biogenesis. Diabetes 2007;56(9):2201-12. [CrossRef] [PubMed]

Fang CX, Dong F, Ren BH, Epstein PN, Ren J. Metallothionein alleviates cardiac contractile dysfunction induced by insulin resistance: role of Akt phosphorylation, PTB1B, PPARgamma and c-Jun. Diabetologia 2005;48(11):2412-21. [CrossRef] [PubMed]

Fukunaka A, Fujitani Y. Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int J Mol Sci 2018;19(2):476. [CrossRef] [PubMed]

Giacconi R, Bonfigli AR, Testa R, Sirolla C, Cipriano C, Marra M, et al. +647 A/C and +1245 MT1A polymorphisms in the susceptibility of diabetes mellitus and cardiovascular complications. Mol Genet Metab 2008; 94(1): 98-104. [CrossRef] [PubMed]

Hattori Y, Naito M, Satoh M, Nakatochi M, Naito H, Kato M, et al. Metallothionein MT2A A-5G Polymorphism as a Risk Factor for Chronic Kidney Disease and Diabetes: Cross-Sectional and Cohort Studies. Toxicol Sci 2016;152(1):181-93. [CrossRef] [PubMed]

International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels, Belgium: International Diabetes Federation; 2019. [CrossRef] [PubMed]

Jakovac H, Grubić Kezele T, Radošević-Stašić B. Expression Profiles of Metallothionein I/II and Megalin in Cuprizone Model of De- and Remyelination. Neuroscience 2018; 388:69-86. [CrossRef] [PubMed]

Kumar V, Singh J, Bala K, Singh J. Association of Metallothionein 1A gene polymorphisms at rs11640851 and rs8052394 with risk of type 2 diabetes mellitus in Indian population. Meta Gene 2021; 28:100862. [CrossRef] [PubMed]

Lazo JS, Pitt BR. Metallothioneins and cell death by anticancer drugs. Annu Rev Pharmacol Toxicol 1995; 35:635-53. [CrossRef] [PubMed]

Liu J, Ren ZH, Qiang H, Wu J, Shen M, Zhang L, et al. Trends in the incidence of diabetes mellitus: results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC Public Health 2020;20(1):1415. [CrossRef] [PubMed]

Liu MJ, Bao S, Gálvez-Peralta M, Pyle CJ, Rudawsky AC, Pavlovicz RE, et al. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep. 2013;3(2):386-400. [CrossRef] [PubMed]

Lopes-Virella MF, Hunt KJ, Baker NL, Lachin J, Nathan DM, Virella G. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Levels of oxidized LDL and advanced glycation end products-modified LDL in circulating immune complexes are strongly associated with increased levels of carotid intima-media thickness and its progression in type 1 diabetes. Diabetes 2011;60(2):582-9. [CrossRef] [PubMed]

Luo YY, Zhao J, Han XY, Zhou XH, Wu J, Ji LN. Relationship Between Serum Zinc Level and Microvascular Complications in Patients with Type 2 Diabetes. Chin Med J (Engl) 2015;128(24):3276-82. [CrossRef] [PubMed]

MacKenzie S, Bergdahl A. Zinc Homeostasis in Diabetes Mellitus and Vascular Complications. Biomedicines 2022;10(1):139. [CrossRef] [PubMed]

Maret W, Vallee BL. Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 1998;95(7):3478-82. [CrossRef] [PubMed]

Maret W. Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes. Prev Nutr Food Sci 2017;22(1):1-8. [CrossRef] [PubMed]

Miao X, Sun W, Fu Y, Miao L, Cai L. Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 2013;7(1):31-52. [CrossRef] [PubMed]

Mocchegiani E, Costarelli L, Giacconi R, Piacenza F, Basso A, Malavolta M. Zinc, metallothioneins and immunosenescence: effect of zinc supply as nutrigenomic approach. Biogerontology 2011;12(5):455-65. [CrossRef] [PubMed]

Mocchegiani E, Malavolta M, Costarelli L, Giacconi R, Cipriano C, Piacenza F, et al. Zinc, metallothioneins and immunosenescence. Proc Nutr Soc 2010;69(3):290-9. [CrossRef] [PubMed]

Moleirinho A, Carneiro J, Matthiesen R, Silva RM, Amorim A, Azevedo L. Gains, losses and changes of function after gene duplication: study of the metallothionein family. PLoS One 2011;6(4):e18487. [CrossRef] [PubMed]

Park Y, Zhang J, Cai L. Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. J Diabetes 2018;10(3):213-31. [CrossRef] [PubMed]

Popov D. Endothelial cell dysfunction in hyperglycemia: Phenotypic change, intracellular signaling modification, ultrastructural alteration, and potential clinical outcomes. Int J Diabetes Mellit 2010;2(3):189-95. [CrossRef]

Raudenska M, Gumulec J, Podlaha O, Sztalmachova M, Babula P, Eckschlager T, et al. Metallothionein polymorphisms in pathological processes. Metallomics 2014;6(1):55-68. [CrossRef] [PubMed]

Sanjeevi N, Freeland-Graves J, Beretvas SN, Sachdev PK. Trace element status in type 2 diabetes: A meta-analysis. J Clin Diagn Res 2018;12(5): OE01-OE08. [CrossRef] [PubMed]

Sato M, Abe T, Tamai M. Analysis of the metallothionein gene in age-related macular degeneration. Jpn J Ophthalmol 2000;44(2):115-21. [CrossRef] [PubMed]

Sekovanić A, Jurasović J, Piasek M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans. Arh Hig Rada Toksikol 2020;71(1):27-47. [CrossRef] [PubMed]

Sobal G, Menzel J, Sinzinger H. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study. Prostaglandins Leukot Essent Fatty Acids 2000;63(4):177-86. [CrossRef] [PubMed]

Suemori S, Shimazawa M, Kawase K, Satoh M, Nagase H, Yamamoto T, et al. Metallothionein, an endogenous antioxidant, protects against retinal neuron damage in mice. Invest Ophthalmol Vis Sci 2006;47(9):3975-82. [CrossRef] [PubMed]

Thornalley PJ, Vasák M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 1985;827(1):36-44. [CrossRef] [PubMed]

Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2016;90(1):1-37. [CrossRef] [PubMed]

Vašák M, Meloni G. Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 2011;16(7):1067-78. [CrossRef] [PubMed]

Wakida K, Shimazawa M, Hozumi I, Satoh M, Nagase H, Inuzuka T, et al. Neuroprotective effect of erythropoietin, and role of metallothionein-1 and -2, in permanent focal cerebral ischemia. Neuroscience 2007;148(1):105-14. [CrossRef] [PubMed]

Wang K, Dai X, He J, Yan X, Yang C, Fan X, et al. Endothelial Overexpression of Metallothionein Prevents Diabetes-Induced Impairment in Ischemia Angiogenesis Through Preservation of HIF-1α/SDF-1/VEGF Signaling in Endothelial Progenitor Cells. Diabetes 2020;69(8):1779-92. [CrossRef] [PubMed]

Wang Y, Xiao M, Sun J, Lu C. Chapter 6 – oxidative stress in diabetes: Molecular basis for diet supplementation. In: Didac M. editor. Molecular nutrition and diabetes. San Diego: Academic Press 2016; 65–72. [CrossRef]

West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000;17(3):171-80. [CrossRef] [PubMed]

Xue W, Liu Y, Zhao J, Cai L, Li X, Feng W. Activation of HIF-1 by metallothionein contributes to cardiac protection in the diabetic heart. Am J Physiol Heart Circ Physiol 2012;302(12):H2528-35. [CrossRef] [PubMed]

Yang L, Li H, Yu T, Zhao H, Cherian MG, Cai L, et al. Polymorphisms in metallothionein-1 and -2 genes associated with the risk of type 2 diabetes mellitus and its complications. Am J Physiol Endocrinol Metab 2008;294(5):E987-92. [CrossRef] [PubMed]

Ye G, Metreveli NS, Ren J, Epstein PN. Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes 2003;52(3):777-83. [CrossRef] [PubMed]

Zhou Z, Mahdi A, Tratsiakovich Y, Zahorán S, Kövamees O, Nordin F, et al. Erythrocytes From Patients With Type 2 Diabetes Induce Endothelial Dysfunction Via Arginase I. J Am Coll Cardiol 2018;72(7):769-80. [CrossRef] [PubMed]

Published
2024/04/10
Section
Original article