Robot-assisted gait training after a stroke

  • Ivana Maric Outpatient clinic "Drugi korak", Belgrade, Serbia
  • Marija Trajkov Academy of Applied Studies Belgrade, The College of Health Sciences, Serbia https://orcid.org/0000-0002-3544-3034
  • Dragana Kljajic Academy of Applied Studies Belgrade, The College of Health Sciences, Serbia
  • Milan Ilic Academy of Applied Studies Belgrade, The College of Health Sciences, Serbia
Keywords: gait training, neurorehabilitation, exoskeleton, robotic devices, hemiparesis

Abstract


A gait disorder, which arose as a result of a stroke, leads to a significant disability. The main goal of neurorehabilitation is to restore the function of independent movement through conventional physiotherapy, but also the application of Robot-assisted Gait Training. The aim of this paper is to analyze the current use of robotic gait trainers in the rehabilitation of gait in people after a stroke. In clinical practice, there are different types of devices that are adapted for people, both in the subacute and chronic stages after suffering a stroke. Changes in gait function resulting from the use of robotic gait trainers, such as increases in gait speed, stride length, and spatial symmetry, are evident in clinical practice. However, there is a lack of follow-up evaluations and long-term effects, as well as risk assessment of the use of these devices in gait rehabilitation in people after a stroke.

 

References

Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet 2011;14;377(9778):1693-702. doi: 10.1016/S0140-6736(11)60325‒5.

Blennerhassett JM, Dite W, Ramage ER, Richmond ME. Changes in balance and walking from stroke rehabilitation to the community: a follow-up observational study. Arch Phys Med Rehabil. 2012;93(10):1782‒7. doi:10.1016/j.apmr.2012.04.005.

Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil. 2016;8;13(1):53. doi:10.1186/s12984-016-0162-5.

Ii T, Hirano S, Tanabe S, Saitoh E, Yamada J, Mukaino M, Watanabe M, Sonoda S, Otaka Y. Robot-assisted Gait Training Using Welwalk in Hemiparetic Stroke Patients: An Effectiveness Study with Matched Control. J Stroke Cerebrovasc Dis. 2020;29(12):105377. doi:10.1016/j.jstrokecerebrovasdis.2020.105377.

Mehrholz J, Pohl M, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2014;1. CD002840. doi:10.1002/14651858.CD002840.pub4.

Lazaro R, Reina-guerra S, Quiben M. Umphred's Neurological Rehabilitation. (7th Edition). St. Louis, Missouri: Elsevier ‒ OHCE; 2020.

Zhang X, Yue Z, Wang J. Robotics in Lower-Limb Rehabilitation after Stroke. Behav Neurol. 2017;2017:3731802. doi:10.1155/2017/3731802.

Aqueveque P, Ortega P, Pino E, Saavedra F, Germany E, Gómez B. After Stroke Movement Impairments: A Review of Current Technologies for Rehabilitation. In Physical Disabilities ‒ Therapeutic Implications. InTech. 2017. doi:10.5772/67577.

Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review. PM R. 2018;10(9 Suppl 2):174‒188. doi:10.1016/j.pmrj.2018.06.005.

Maggioni S, Melendez-Calderon A, van Asseldonk E, Klamroth-Marganska V, Lünenburger L, Riener R et al. Robot-aided assessment of lower extremity functions: a review. J Neuroeng Rehab. 2016;13(1):72. doi:10.1186/s12984-016-0180-3.

Boronchelli F, Zucchella C, Serrao M, Intiso D, Bartolo M. The Effect of Robotic Assisted Gait Training With Lokomat on Balance Control After Stroke: Systematic Review and MetaAnalysis. Front. Neurol. 2021;12:661815. doi:10.3389/fneur.2021.661815.

Ii T, Hirano S, Tanabe S, Saitoh E, Yamada J, Mukaino M, Watanabe M, Sonoda S, Otaka Y. Robot-assisted Gait Training Using Welwalk in Hemiparetic Stroke Patients: An Effectiveness Study with Matched Control. J Stroke Cerebrovasc Dis. 2020;29(12):105377. doi: 10.1016/j.jstrokecerebrovasdis.2020.105377.

Warutkar V, Dadgal R, Mangulkar UR. Use of Robotics in Gait Rehabilitation Following Stroke: A Review. Cureus. 2022;4;14(11):e31075. doi:10.7759/cureus.31075.

Rodríguez-Fernández A, Lobo-Prat J, Font-Llagunes JM. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil. 2021;18(1):22. doi:10.1186/s12984-021-00815-5.

Maeshima S, Osawa A, Nishio D, Hirano Y, Takeda K, Kigawa H, et al. Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report. BMC Neurol. 2011;11:116. doi: 10.1186/1471-2377-11-116.

Byl NN. Mobility training using a bionic knee orthosis in patients in a poststroke chronic state: a case series. J Med Case Rep. 2012;6:216. doi:10.1186/1752-1947-6-216.

Kawamoto H, Kamibayashi K, Nakata Y, Yamawaki K, Ariyasu R, Sankai Y, et al. Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 2013;13:141. doi:10.1186/1471-2377-13-141.

Stein J, Bishop L, Stein DJ, Wong CK. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study. Am J Phys Med Rehabil. 2014;93:987–94. doi:10.1097/PHM.0000000000000119.

Watanabe H, Tanaka N, Inuta T, Saitou H, Yanagi H. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch Phys Med Rehabil. 2014; 95:2006–12. doi:10.1016/j.apmr.2014.07.002.

Fukuda H, Samura K, Hamada O, Saita K, Ogata T, Shiota E, et al. Effectiveness of acute phase hybrid assistive limb rehabilitation in stroke patients classified by paralysis severity. Neurol Med Chir. (Tokyo) 2015;55:487–92. doi:10.2176/nmc.oa.2014-0431.

Yoshimoto T, Shimizu I, Hiroi Y, Kawaki M, Sato D, Nagasawa M. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control. Int J Rehabil Res. 2015;38:338–43. doi:10.1097/MRR.0000000000000132.

Nilsson A, Vreede KS, Haglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton – the hybrid assistive limb: a study of safety and feasibility. J NeuroEng Rehabil. 2014;11:92. doi:10.1186/1743-0003-11-92.

Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, et al. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J NeuroEng Rehabil. 2015;12:54. doi:10.1186/s12984-015-0048-y.

Buesing C, Fisch G, O’Donnell M, Shahidi I, Thomas L, Mummidisetty CK, et al. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J NeuroEng Rehabil. 2015;12:69. doi: 10.1186/s12984-015-0062-0.

Jezernik S, Colombo G, Keller T, Frueh H, Morari M. Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation 2003;6:108–115. doi:10.1046/j.1525-1403.2003.03017.x.

Tomida K, Sonoda S, Hirano S, Suzuki A, Tanino G, Kawakami K, Saitoh E, Kagaya H. Randomized Controlled Trial of Gait Training Using Gait Exercise Assist Robot (GEAR) in Stroke Patients with Hemiplegia. J Stroke Cerebrovasc Dis. 2019;28(9):2421‒28. doi: 10.1016/j.jstrokecerebrovasdis.2019.06.030.

Katoh D, Tanikawa H, Hirano S, Mukaino M, Yamada J, Sasaki S, Ohtsuka K, Katoh M, Saitoh E. The effect of using Gait Exercise Assist Robot (GEAR) on gait pattern in stroke patients: a cross-sectional pilot study. Top Stroke Rehabil. 2020;27(2):103‒9. doi:10.1080/10749357.2019.1660080.

Ogino T, Kanata Y, Uegaki R, Yamaguchi T, Morisaki K, Nakano S, Domen K. Effects of gait exercise assist robot (GEAR) on subjects with chronic stroke: A randomized controlled pilot trial. J Stroke Cerebrovasc Dis. 2020;29(8):104886. doi:10.1016/j.jstrokecerebrovasdis.2020.104886.

Uçar DE, Paker N, Bugdayci D. Lokomat: a therapeutic chance for patients with chronic hemiplegia. NeuroRehabilitation 2014;34:447–53. doi:10.3233/NRE-141054.

Aimoto K, Matsui T, Asai Y, Tozawa T, Tsukada T, Kawamura K, Ozaki K, Kondo I. Gait improvement in stroke patients by Gait Exercise Assist Robot training is related to trunk verticality. J Phys Ther Sci. 2022;34(11):715-19. doi:10.1589/jpts.34.715.

Yun N, Joo MC, Kim SC, Kim MS. Robot-assisted gait training effectively improved lateropulsion in subacute stroke patients: a single-blinded randomized controlled trial. Eur J Phys Rehabil Med. 2018;54:827–36. doi:10.23736/S1973-9087.18.05077-3.

Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 2009;23:5–13. doi:10.1177/1545968308326632.

Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008;39:1786–92. doi:10.1161/STROKEAHA.107.504779.

Müller S, Vallence AM, Winstein C. Investigation of perceptualmotor behavior across the expert athlete to disabled patient skill continuum can advance theory and practical application. J Mot Behav. 2018; 50:697–707. doi:10.1080/00222895.2017.1408557.

Ha Y, Park M. Effects of Stroke Rehabilitation Using Gait Robot-Assisted Training and Person-Centered Goal Setting: A Single Blinded Pilot Study. Healthcare (Basel) 2023;16:11(4):588. doi: 10.3390/healthcare11040588.

Schmidt R, Lee T. Human kinetics. In: Motor Leaning and Performance, 5th ed. 2013.

Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl). 2016;22;9:455‒66. doi:10.2147/MDER.S103102.

He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. Med Devices (Auckl). 2017;10:89‒107. doi:10.2147/MDER.S107134.

Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016;30(1):73–84. doi: 10.1177/0269215515575166.

Published
2024/03/29
Section
Review