MODELING OF MUSHROOMS (Agaricus bisporus) OSMOTIC DEHYDRATION PROCESS IN SUGAR BEET MOLASSES
Abstract
Mushrooms (Agaricus bisphorus) were osmotically dehydrated in sugar beet molasses solutions at concentrations of 60%, 70% and 80%, at operating temperatures of 25 °C, 35 °C and 45 °C during 0.5h, 1h, 1.5h, 2h, 3h, and 5 hours. Moisture content, water activity (aw), microbial profile (total plate counts, Enterobacteriaceae, total yeasts and moulds count) and mineral matter content (content of potassium, magnesium, iron and calcium) were determined to the obtained osmodehydrated mushroom samples. Response Surface Methodology and Analysis of variance were selected to estimate the main effects of the process variables on osmodehydration process and microbiological, mineral matter and chemical responses. Increase of applied osmotic process parameters values has led to the significant increase of mineral matter content and decrease of aw values, microbiological load and relative protein content, indicating a possibility for prolonged shelf life and further processing. Enriched osmodehydrated mushrooms regarding nutritive profile could be considered for new functional (semi)products.
References
Ahmed, I., Qazi, I.M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the preser-vation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34, 29-43. https://doi.org/10.1016/j.ifset.2016.01.003
Amami, E., Fersi, A., Khezami, L., Vorobiev, E., & Ke-chaou, N. (2007). Centrifugal osmotic dehydration and rehydration of carrot tissue pre-treated by pulsed electric field. LWT - Food Science and Technology, 40 (7), 1156–1166. https://doi.org/10.1016/j.lwt.2006.08.018
AOAC. (2000). Official methods of analysis. Washington D.C., USA: Association of Official Analytical Chemists.
Chiralt, A., & Fito, P. (2003). Transport mechanisms in osmotic dehydration: The role of the structure. Food Science and Technology International, 9(3), 179-186. https://doi.org/10.1177/1082013203034757
Ciurzyńska, A., Kowalska, H., Czajkowska, K., & Lenart, A. (2016). Osmotic dehydration in production of sustainable and healthy food. Trends in Food Science and Technology, 50, 186–192. https://doi.org/10.1016/j.tifs.2016.01.017
Commission Regulation (EC) 2073/2005. (2005). Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official Journal of the EU, 338, 1-26.
Ćurčić B., Pezo L., Filipović V., Nićetin M., & Knežević V. (2015). Osmotic treatment of fish in two different solutions-artificial neural network model. Journal of Food Processing and Preservation, 39(6), 671-680. https://doi.org/10.1111/jfpp.12275.
Cvetković, B., Pezo, L., Mišan, A., Mastilović, J., Kevrešan, Ž., Ilić, N., & Filipčev, B. (2019). The effects of osmotic dehydration of white cabbage on polyphenols and mineral content. LWT - Food Science and Technology, 110, 332-337. https://doi.org/10.1016/j.lwt.2019.05.001.
Darvishi, H., Azadbakht, M., & Noralahi, B. (2018). Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation. Renewable Energy, 120, 201-208. https://doi.org/10.1016/j.renene.2017.12.068.
Doymaz, I. (2014). Drying kinetics and rehydration characteristics of convective hot-air dried white button mushroom slices. Journal of Chemistry, 2014, Article ID 453175. https://doi.org/10.1155/2014/453175
Erle, U., & Schubert, H. (2001). Combined osmotic and microwave-vacuum dehydration of apples and strawberries. Journal of Food Engineering, 49(2-3), 193-199. https://doi.org/:10.1016/S0260-8774(00)00207-7.
Falade, K.O., Igbeka, J.C., & Ayanwuyi, F.A. (2007). Kinetics of mass transfer and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3), 979–985. https://doi:10.1016/j.jfoodeng.2006.06.033.
Fernandes, F.A.N., Gallão, M.I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186–190. https://doi.org/10.1016/j.jfoodeng.2008.06.021.
Filipović, I., Markov, S., Filipović, V., Filipović, J., Vujačić, V., & Pezo, L. (2019). The effects of the osmotic dehydration parameters on reduction of selected microorganisms on chicken meat. Journal of Food Processing and Preservation, 43(10), 141-144. https://doi.org/10.1111/jfpp.14144.
Filipović, V., Ćurčić, B., Nićetin, M., Plavšić, D., Ko-privica G. & Mišljenović, N. (2012). Mass transfer and microbiological profile of pork meat de-hydrated in two different osmotic solutions. Hemijska Industrija, 66(5), 743-748. https://doi.org/10.2298/HEMIND120130033F.
Filipović, V., Lončar, B., Nićetin, M., Knežević, V., Fili-pović, I. & Pezo, L. (2014). Modeling counter-current osmotic dehydration process of pork meat in molasses. Journal of Food Process Engineering, 37(5), 533-542. https://doi.org/10.1111/jfpe.12114.
González-Pérez, J.E., López-Méndez, E.M., Luna-Gue-vara, J.J., Ruiz-Espinosa, H., Ochoa-Velasco, C.E., & Ruiz-Lópeza, I.I. (2019). Analysis of mass transfer and morphometric characteristics of white mushroom (Agaricus bisporus) pilei during osmo-tic dehydration. Journal of Food Engineering, 240, 120-132. https://doi.org/10.1016/j.jfoodeng.2018.07.026
Gupta, P., Bhat, A., Chauhan, H., Ahmed N., & Malik, A. (2015). Osmotic dehydration of button mushroom. International Journal of Food and Fermentation Technology, 5(2), 177-182. https://doi.org/10.5958/2277-9396.2016.00003.9
ISO 21527-2:2008. (2008). Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of yeasts and moulds - Part 2: Colony count technique in products with water activity less than or equal to 0.95.
ISO 21528-2:2017. (2017). Microbiology of the food chain - Horizontal method for the detection and enumeration of Enterobacteriaceae - Part 2: Colony-count technique.
ISO 4833-1:2013. (2013). Microbiology of the food chain - Horizontal method for the enumeration of micro-organisms. Colony count at 30 C by the pour plate technique.
ISO 6869:2000. (2000). Animal feeding stuffs – Determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc - Method using atomic absorption spectrometry.
Ispir, A., & Toğrul, Đ.T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166–180. https://doi.org/10.1016/j.cherd.2008.07.011
Khan, M. R. (2012). Osmotic dehydration technique for fruits preservation - A review. Pakistan Journal of Food Sciences, 22(2), 71–85.
Knežević, V., Pezo, L., Lončar, B., Filipović, V., Nićetin, M., Gorjanović, S., & Šuput D. (2019). Anti-oxidant capacity of nettle leaves during osmotic treatment. Periodica Polytechnica-Chemical Engineering, 63(3), 491-498. https://doi.org/10.3311/PPch.12688.
Koprivica, G., Pezo, L., Ćurčić, B., Lević, Lj., & Šuput, D. (2014). Optimization of osmotic dehydration of apples in sugar beet molasses. Journal of Food Processing and Preservation, 38(4), 1705-1715. https://doi.org/10.1111/jfpp.12133.
Lončar, B., Filipović,V., Nićetin, M., Knežević, V., Gubić, J., Plavšić, D., & Pezo L. (2015). Characterisation of chicken breast cubes osmotically treated in sugar beet molasses. Journal on Processing Energy in Agriculture, 19(4), 186-188.
Mišljenović, N., Koprivica, G., Jevrić, L., & Lević, Lj. (2011). Mass transfer kinetics during osmotic dehydration of carrot cubes in sugar beet molasses. Romanian Biotechnological Letters, 16(6), 6790-6799. https://doi.org/10.2298/APT1041047K.
Mújica-Paz, H., Valdez-Fragoso, A., Lopez-Malo, A., Palou, E., & Welti-Chanes, J. (2003). Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. Journal of Food Engineering, 57(4), 305-314. https://doi.org/10.1016/S0260-8774(02)00344-8.
Mundada, M., Hathan, B.S., & Maske, S. (2011). Mass transfer kinetics during osmotic dehydration of pomegranate arils. Journal of Food Science, 75(1), 31–39. https://doi.org/10.1111/j.1750-3841.2010.01921.x
Nićetin, M., Pezo, L., Lončar, B., Filipović, V., Šuput, D., Knežević, V., & Filipović, J. (2017). The possibility of increasing the antioxidant activity of celery root during osmotic treatment. Journal of the Serbian Chemical Society, 82(3), 253-265. https://doi.org/10.2298/JSC161020015N.
Nićetin, M., Lončar, B., Filipović, V., Knežević, V., Kuljanin, T., Pezo, L., & Plavšić, D. (2015a). The change in microbiological profile and water activity due to the osmotic treatment of celery leaves and root. Journal on Processing Energy in Agriculture, 19(4), 193-196.
Nićetin, M., Pezo L., Lončar, B., Filipović, V., Šuput, D., Zlatanović, S., & Dojčinović, B. (2015b). Evaluation of water, sucrose and minerals effective diffusivities during osmotic treatment of pork in sugar beet molasses. Hemijska Industrija, 69(3), 241–251. https://doi.org/10.2298/HEMIND131003037N.
Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 19(1), 7–18.
Pravilnik o opštim i posebnim uslovima higijene hrane u bilo kojoj fazi proizvodnje, prerade i prometa. (2010). Sl. glasnik RS, 72/2010; 62/2018.
Qiu, L., Zhang, M., Tang, J., Adhikari, B., & Cao, P. (2019). Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Research International, 116, 90-102. https://doi.org/10.1016/j.foodres.2018.12.055.
Rahman, M.S., & Perera, C. (2007). Drying and food preservation. In M. Shafiur Rahman (Ed.), Handbook of food preservation (2nd ed.). Boca Raton, FL: CRC Press.
Ramaswamy, H. S. (2005). Osmotic drying. In The Workshop on Drying of Food and Pharmaceuticals at the Fourth Asia Pacific Drying Conference. Kolkata, India.
Rastogi, N.K., & Raghavarao, K.S.M.S. (2004). Mass transfer during osmotic dehydration of pineapple: considering Fickian diffusion in cubical configuration. LWT - Food Science and Technology, 37(1), 43-47. https://doi.org/10.1016/S0023-6438(03)00131-2.
Rodrigues, A.E., & Mauro, M.A. (2004). Water and sucrose diffusion coefficients in apple during osmotic dehydration. In Proceedings of the 14th International Drying Symposium. São Paulo, Brazil.
Sauvant, D., Perez, J.M., & Tran, G. (2004). Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage: Porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poisons (2ème édition revue et corrigée). Versailles, France: INRA Editions.
Shi, J., & Xue, J.S. (2009). Application and development of osmotic dehydration technology in food processing. In C. Ratti (Ed.), Advances in food dehydration. USA: CRC Press.
Silva, K.S., Fernandes, M.A., & Mauro, M.A. (2014). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134, 37-44.
https://doi.org/10.1016/j.jfoodeng.2014.02.020.
Šarić, Lj., Filipčev, B., Šimurina, O., Plavšić, D., & Šarić, B. (2016). Sugar beet molasses: properties and applications in osmotic dehydration of fruits and vegetables. Food and Feed Research, 43(2), 135-144. https://doi.org/10.5937/FFR1602135Š.
Šobot, K., Laličić-Petronijević, J., Filipović, V., Nićetin, M., Filipović, J. & Popović, Lj. (2019). Contribution of osmotically dehydrated wild garlic on biscuits' quality parameters. Periodica Polytechnica Chemical Engineering, 63(3), 499-507. https://doi.org/10.3311/PPch.13268.
Šuput, D., Lazić, V., Pezo, L., Gubić, J., Šojić, B., Plavšić, D., Lončar, B., Nićetin, M., Filipović, V. & Knežević, V. (2019). Shelf life and quality of dehydrated meat packed in edible coating under modified atmosphere. Romanian Biotechnological Letters, 24(3), 545-553. https://doi.org/10.25083/rbl/24.3/545.553.
Tortoe, C. (2010). A review of osmodehydration for food industry. African Journal of Food Science, 4(6), 303–324.
Waliszewski, K.N., Delgado, J.L., & Garcia M.A. (2002). Equilibrium concentration and water and sucrose diffusivity in osmotic dehydration of pineapple slabs. Drying Technology, 20, 527-538. https://doi.org/10.1081/DRT-120002555.