MODELOVANJE PROCESA OSMOTSKE DEHIDRATACIJE PEČURAKA (AGARICUS BISPHORUS) U MELASI ŠEĆERNE REPE
Sažetak
Pečurke (Agaricus bisphorus) su osmotski dehidrirane u rastvorima melase šećerne repe različitih koncentracija (60%, 70% i 80%), na radnim temperaturama od 25, 35 i 45 °C tokom 0,5, 1, 1,5, 2, 3 i 5 h. Sadržaj vlage, aktivnost vode (aw), mikrobiološki kvalitet (ukupan broj bakterija, enterobakterije, ukupan broj kvasca i plesni) i sadržaj mineralnih materija (sadržaj kalijuma, kalcijuma, magnezijuma i gvožđa) određeni su na dobijenim uzorcima osmotski dehidriranih pečuraka. Metodi odzivnih površina i analize varijanse odabrani su da bi se procenili glavni efekti procesnih varijabli na mikrobiološki kvalitet, sadržaj mineralnih materija i hemijski sastav osmotski dehidriranih pečuraka. Povećanje vrednosti procesnih parametara osmotske dehidratacije dovelo je do značajnog povećanja sadržaja mineralnih materija (na primer, porast sadržaja K za 269,42% i sadržaja Ca za 939.03%), a smanjenja vrednosti aktivnosti vode (sa 0,941 na 0,811), mikrobiološkog opterećenja i relativnog sadržaja proteina (pad od 33,07%) u dehidriranim uzorcima pečuraka, što ukazuje na mogućnost produženog roka trajanja i pogodnosti ovako obrađenih pečuraka za dalju obradu. Osmotski dehidrirane pečurke mogu se smatrati novim funkcionalnim (polu)proizvodima, uzimajući u obzir njihov poboljšan nutritivni profil.
Reference
Ahmed, I., Qazi, I.M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the preser-vation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34, 29-43. https://doi.org/10.1016/j.ifset.2016.01.003
Amami, E., Fersi, A., Khezami, L., Vorobiev, E., & Ke-chaou, N. (2007). Centrifugal osmotic dehydration and rehydration of carrot tissue pre-treated by pulsed electric field. LWT - Food Science and Technology, 40 (7), 1156–1166. https://doi.org/10.1016/j.lwt.2006.08.018
AOAC. (2000). Official methods of analysis. Washington D.C., USA: Association of Official Analytical Chemists.
Chiralt, A., & Fito, P. (2003). Transport mechanisms in osmotic dehydration: The role of the structure. Food Science and Technology International, 9(3), 179-186. https://doi.org/10.1177/1082013203034757
Ciurzyńska, A., Kowalska, H., Czajkowska, K., & Lenart, A. (2016). Osmotic dehydration in production of sustainable and healthy food. Trends in Food Science and Technology, 50, 186–192. https://doi.org/10.1016/j.tifs.2016.01.017
Commission Regulation (EC) 2073/2005. (2005). Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official Journal of the EU, 338, 1-26.
Ćurčić B., Pezo L., Filipović V., Nićetin M., & Knežević V. (2015). Osmotic treatment of fish in two different solutions-artificial neural network model. Journal of Food Processing and Preservation, 39(6), 671-680. https://doi.org/10.1111/jfpp.12275.
Cvetković, B., Pezo, L., Mišan, A., Mastilović, J., Kevrešan, Ž., Ilić, N., & Filipčev, B. (2019). The effects of osmotic dehydration of white cabbage on polyphenols and mineral content. LWT - Food Science and Technology, 110, 332-337. https://doi.org/10.1016/j.lwt.2019.05.001.
Darvishi, H., Azadbakht, M., & Noralahi, B. (2018). Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation. Renewable Energy, 120, 201-208. https://doi.org/10.1016/j.renene.2017.12.068.
Doymaz, I. (2014). Drying kinetics and rehydration characteristics of convective hot-air dried white button mushroom slices. Journal of Chemistry, 2014, Article ID 453175. https://doi.org/10.1155/2014/453175
Erle, U., & Schubert, H. (2001). Combined osmotic and microwave-vacuum dehydration of apples and strawberries. Journal of Food Engineering, 49(2-3), 193-199. https://doi.org/:10.1016/S0260-8774(00)00207-7.
Falade, K.O., Igbeka, J.C., & Ayanwuyi, F.A. (2007). Kinetics of mass transfer and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3), 979–985. https://doi:10.1016/j.jfoodeng.2006.06.033.
Fernandes, F.A.N., Gallão, M.I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186–190. https://doi.org/10.1016/j.jfoodeng.2008.06.021.
Filipović, I., Markov, S., Filipović, V., Filipović, J., Vujačić, V., & Pezo, L. (2019). The effects of the osmotic dehydration parameters on reduction of selected microorganisms on chicken meat. Journal of Food Processing and Preservation, 43(10), 141-144. https://doi.org/10.1111/jfpp.14144.
Filipović, V., Ćurčić, B., Nićetin, M., Plavšić, D., Ko-privica G. & Mišljenović, N. (2012). Mass transfer and microbiological profile of pork meat de-hydrated in two different osmotic solutions. Hemijska Industrija, 66(5), 743-748. https://doi.org/10.2298/HEMIND120130033F.
Filipović, V., Lončar, B., Nićetin, M., Knežević, V., Fili-pović, I. & Pezo, L. (2014). Modeling counter-current osmotic dehydration process of pork meat in molasses. Journal of Food Process Engineering, 37(5), 533-542. https://doi.org/10.1111/jfpe.12114.
González-Pérez, J.E., López-Méndez, E.M., Luna-Gue-vara, J.J., Ruiz-Espinosa, H., Ochoa-Velasco, C.E., & Ruiz-Lópeza, I.I. (2019). Analysis of mass transfer and morphometric characteristics of white mushroom (Agaricus bisporus) pilei during osmo-tic dehydration. Journal of Food Engineering, 240, 120-132. https://doi.org/10.1016/j.jfoodeng.2018.07.026
Gupta, P., Bhat, A., Chauhan, H., Ahmed N., & Malik, A. (2015). Osmotic dehydration of button mushroom. International Journal of Food and Fermentation Technology, 5(2), 177-182. https://doi.org/10.5958/2277-9396.2016.00003.9
ISO 21527-2:2008. (2008). Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of yeasts and moulds - Part 2: Colony count technique in products with water activity less than or equal to 0.95.
ISO 21528-2:2017. (2017). Microbiology of the food chain - Horizontal method for the detection and enumeration of Enterobacteriaceae - Part 2: Colony-count technique.
ISO 4833-1:2013. (2013). Microbiology of the food chain - Horizontal method for the enumeration of micro-organisms. Colony count at 30 C by the pour plate technique.
ISO 6869:2000. (2000). Animal feeding stuffs – Determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc - Method using atomic absorption spectrometry.
Ispir, A., & Toğrul, Đ.T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166–180. https://doi.org/10.1016/j.cherd.2008.07.011
Khan, M. R. (2012). Osmotic dehydration technique for fruits preservation - A review. Pakistan Journal of Food Sciences, 22(2), 71–85.
Knežević, V., Pezo, L., Lončar, B., Filipović, V., Nićetin, M., Gorjanović, S., & Šuput D. (2019). Anti-oxidant capacity of nettle leaves during osmotic treatment. Periodica Polytechnica-Chemical Engineering, 63(3), 491-498. https://doi.org/10.3311/PPch.12688.
Koprivica, G., Pezo, L., Ćurčić, B., Lević, Lj., & Šuput, D. (2014). Optimization of osmotic dehydration of apples in sugar beet molasses. Journal of Food Processing and Preservation, 38(4), 1705-1715. https://doi.org/10.1111/jfpp.12133.
Lončar, B., Filipović,V., Nićetin, M., Knežević, V., Gubić, J., Plavšić, D., & Pezo L. (2015). Characterisation of chicken breast cubes osmotically treated in sugar beet molasses. Journal on Processing Energy in Agriculture, 19(4), 186-188.
Mišljenović, N., Koprivica, G., Jevrić, L., & Lević, Lj. (2011). Mass transfer kinetics during osmotic dehydration of carrot cubes in sugar beet molasses. Romanian Biotechnological Letters, 16(6), 6790-6799. https://doi.org/10.2298/APT1041047K.
Mújica-Paz, H., Valdez-Fragoso, A., Lopez-Malo, A., Palou, E., & Welti-Chanes, J. (2003). Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. Journal of Food Engineering, 57(4), 305-314. https://doi.org/10.1016/S0260-8774(02)00344-8.
Mundada, M., Hathan, B.S., & Maske, S. (2011). Mass transfer kinetics during osmotic dehydration of pomegranate arils. Journal of Food Science, 75(1), 31–39. https://doi.org/10.1111/j.1750-3841.2010.01921.x
Nićetin, M., Pezo, L., Lončar, B., Filipović, V., Šuput, D., Knežević, V., & Filipović, J. (2017). The possibility of increasing the antioxidant activity of celery root during osmotic treatment. Journal of the Serbian Chemical Society, 82(3), 253-265. https://doi.org/10.2298/JSC161020015N.
Nićetin, M., Lončar, B., Filipović, V., Knežević, V., Kuljanin, T., Pezo, L., & Plavšić, D. (2015a). The change in microbiological profile and water activity due to the osmotic treatment of celery leaves and root. Journal on Processing Energy in Agriculture, 19(4), 193-196.
Nićetin, M., Pezo L., Lončar, B., Filipović, V., Šuput, D., Zlatanović, S., & Dojčinović, B. (2015b). Evaluation of water, sucrose and minerals effective diffusivities during osmotic treatment of pork in sugar beet molasses. Hemijska Industrija, 69(3), 241–251. https://doi.org/10.2298/HEMIND131003037N.
Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 19(1), 7–18.
Pravilnik o opštim i posebnim uslovima higijene hrane u bilo kojoj fazi proizvodnje, prerade i prometa. (2010). Sl. glasnik RS, 72/2010; 62/2018.
Qiu, L., Zhang, M., Tang, J., Adhikari, B., & Cao, P. (2019). Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Research International, 116, 90-102. https://doi.org/10.1016/j.foodres.2018.12.055.
Rahman, M.S., & Perera, C. (2007). Drying and food preservation. In M. Shafiur Rahman (Ed.), Handbook of food preservation (2nd ed.). Boca Raton, FL: CRC Press.
Ramaswamy, H. S. (2005). Osmotic drying. In The Workshop on Drying of Food and Pharmaceuticals at the Fourth Asia Pacific Drying Conference. Kolkata, India.
Rastogi, N.K., & Raghavarao, K.S.M.S. (2004). Mass transfer during osmotic dehydration of pineapple: considering Fickian diffusion in cubical configuration. LWT - Food Science and Technology, 37(1), 43-47. https://doi.org/10.1016/S0023-6438(03)00131-2.
Rodrigues, A.E., & Mauro, M.A. (2004). Water and sucrose diffusion coefficients in apple during osmotic dehydration. In Proceedings of the 14th International Drying Symposium. São Paulo, Brazil.
Sauvant, D., Perez, J.M., & Tran, G. (2004). Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage: Porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poisons (2ème édition revue et corrigée). Versailles, France: INRA Editions.
Shi, J., & Xue, J.S. (2009). Application and development of osmotic dehydration technology in food processing. In C. Ratti (Ed.), Advances in food dehydration. USA: CRC Press.
Silva, K.S., Fernandes, M.A., & Mauro, M.A. (2014). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134, 37-44.
https://doi.org/10.1016/j.jfoodeng.2014.02.020.
Šarić, Lj., Filipčev, B., Šimurina, O., Plavšić, D., & Šarić, B. (2016). Sugar beet molasses: properties and applications in osmotic dehydration of fruits and vegetables. Food and Feed Research, 43(2), 135-144. https://doi.org/10.5937/FFR1602135Š.
Šobot, K., Laličić-Petronijević, J., Filipović, V., Nićetin, M., Filipović, J. & Popović, Lj. (2019). Contribution of osmotically dehydrated wild garlic on biscuits' quality parameters. Periodica Polytechnica Chemical Engineering, 63(3), 499-507. https://doi.org/10.3311/PPch.13268.
Šuput, D., Lazić, V., Pezo, L., Gubić, J., Šojić, B., Plavšić, D., Lončar, B., Nićetin, M., Filipović, V. & Knežević, V. (2019). Shelf life and quality of dehydrated meat packed in edible coating under modified atmosphere. Romanian Biotechnological Letters, 24(3), 545-553. https://doi.org/10.25083/rbl/24.3/545.553.
Tortoe, C. (2010). A review of osmodehydration for food industry. African Journal of Food Science, 4(6), 303–324.
Waliszewski, K.N., Delgado, J.L., & Garcia M.A. (2002). Equilibrium concentration and water and sucrose diffusivity in osmotic dehydration of pineapple slabs. Drying Technology, 20, 527-538. https://doi.org/10.1081/DRT-120002555.