EFFICIENCY INVESTIGATION OF THE USE OF PYROPHYLLITE IN ENSILING MAIZE PLANT

  • Aleksandra Bočarov-Stančić Institut za primenu nauke u poljoprivredi, Beograd
Keywords: ensiling, maize plant, pyrophyllite

Abstract


The paper presents the results of testing the effect of pyrophyllite shale (pyrophyllite) on the quality of maize plant silage, primarily on the production of organic acids, pH value, quality assessment and microbiological safety. The ensiling was done in plastic containers which allowed the storage of 10 kg of chopped green mass. Tested pyrophyllite doses were: 0% in the control treatment (I), 0.5 and 1.0% in experimental treatments (II and III, respectively). Granulated pyrophyllite (100 µm), originating from Parsovići, Konjic site, AD Harbi Ltd., Sarajevo, Bosnia and Herzegovina, was manually incorporated. The chopped green mass of the maize plant came from FAO 600 hybrids. The green mass containing 37.17% of dry matter (final waxy ripening phase) was compressed in the same manner in all three treatments during the filling of the vessels. The containers were then covered with nylon foil (0.2 mm) above which a layer of fine sand (approx. 5 cm) was placed in toward the silage protection from air passage. The silages were opened after 7 weeks and organoleptic, chemical and microbiological analyses were performed. The organoleptic properties of silages (colour and odour) were better in silages containing 0.5 and 1.0% pyrophyllite. The silage temperature at the moment of opening of the containers was lower in the treatments with 0.5 and 1.0% added pyrophyllite (13.7 and 13.2 °C, respectively) while in the control treatment it was 14.6 °C. The addition of pyrophyllite to silage affected the production of volatile fatty acids (p ≤ 0.05). The highest amount of lactic acid was found in the silage sample without the addition of pyrophyllite, and acetic acid in the silage treated with 0.5 and 1.0% of pyrophyllite. The lowest amount of butyric acid was determined in the silage with the addition of 1% pyrophyllite. Based on the content and interrelationship of lactic, acetic and butyric acid, as well as the pH values, all three silages were rated as the highest (I) class. The number of aerobic mesophilic bacteria, as well as the number of yeasts, was lower in the silages with the addition of 0.5 and 1.0% pyrophyllite. In future, particular attention should be paid on the possibility of pyrophyllite enrichment (e.g. with nitrogen) and more appropriate physical formulation (e.g. granules) that would allow more efficient practical application.

Author Biography

Aleksandra Bočarov-Stančić, Institut za primenu nauke u poljoprivredi, Beograd

dipl. mol. biolog

mr zaštite i unapređenja životne sredine

dr bioloških i tehničkih nauka

naučni savetnik

References

Acosta, A., Y., Boeck G., Klimitsch, F., Schatzmayr, G., & Pasteiner, S. (2008). Aerobic stability and silage quality parameters. Journal of Animal Sciences, 86, E-suppl. 2/Dairy Science, 91, E-suppl. 1, p. 30. https://www.jtmtg.org/JAM/2008/abstracts/0027.PDF

Adamović, M. (2001). Proizvodnja silaže i senaže. Manual. Belgrade: Društvo poljoprivrednih inženjera i tehničara.

Adamović, M. (2019). Program istraživanja i razvoj proizvoda na bazi pirofilita u stočarstvu i veterini, skladištenju žitarica, ribarstvu i gljivarstvu Research programme. Federacija BiH, AD Harbi d.o.o.

Adamović, M, Lemić, J, Jovičin, M, Tomašević- Čanović, M., Jovičin, M., & Kovačević, M. (2004). Uticaj pufera na produkciju i sastav mleka i metabolički profil krava. Biotehnologija u stočarstvu, 20 (5-6), 195-202.

Adamović, M., Milivojčević, D., Živanović, Č., Bočarov- Stančić, A., & Šorić, P. (2015). The quality of maize (plants and maize grain silage ensiled in polyethylene foil). Journal of Processing and Energy in Agriculture, 1-3, 58-60.

Adamović, M., & Obradović, S. (2016). Proizvodnja i korišćenje silaže i senaže Monograph (pp. 1-140). Novi Pazar, Serbia: State University of Novi Pazar.

Adamović, M., Sinovec, Z., Nešić, S., & Tomašević-Čanović, M. (2001). Doprinos adsorbenata mikotoksina efikasnijem korišćenju stočne hrane. Efikasnost korišćenja zeolita u tehnologiji siliranja. In Proceedings of the IX Simpozijum Tehnologija stočne hrane (pp. 21-44). Zlatibor, Serbia.

Adamović, M., Stoićević, Lj., & Jovanović, R. (1997). Doprinos siliranja korišćenju organske materije i zaštiti okoline. In Proceedings of Savetovanje Ekotehnologija u prehrambenoj industriji i biotehnologiji (pp. 233-242). Vrnjačka Banja, Serbia.

Adamović, M., & Stojanović, M. (2019). Pirofilit (prirodni i modifikovan-oplemenjen)-funkcionalna hrana za biljke i životinje Research report. AD Harbi d.o.o., Sarajevo, Bosnia and Herzegovina.

Ashbell, G., & Kashanchi, Y. (1987). In-silo losses from wheat ensiled in bunker silos in a subtropical climate. Journal of the Science of Food Agriculture, 40, 95-103.

Ashbell, G., Weinberg, Z. G., Hen, Y., & Filya, I. (2002). The effects of temperature on the aerobic stability of wheat and corn silages. Journal of Industrial Microbiology and Biotechnology, 28, 261-263.

Bakici, Y., & Demirel, M. (2004). Determination of qualities of corn, sorghum, sudangrass and sorghum x sudangrass hybrid silages. Journal of Applied Animal Research, 26, 45-48.

Bočarov-Stančić, A., Bodroža-Solarov, M., Stanković, S., Janković, S., Đisalov, J., Novaković, Ž., & Adamović, M. (2015). Mycotoxins in cattle diet – biodegradation in rumen, occurrence and prevention of mycotoxicoses. In Proceedings of the 4th International Congress “New Perspectives and Challenges of Sustainable Livestock Production” (pp. 748-759). Belgrade, Serbia.

Borreani, G., & Tabacco, E. (2010). The relationship of silage temperature with the microbiological status of the face of corn silage bunkers. Journal of Dairy Science, 93 (6), 2620-2629.

Borreani, G., Tabacco, E., & Cavallarin, L. (2007). A new oxygen barrier film reduces aerobic deterioration in farm scale corn silage. Journal of Dairy Science, 90, 4701-4706.

Danner, H., Holzer, M., Mayrhuber, E., & Braun, R. (2003). Acetic acid increases stability of silage under aerobic conditions. Applied and Environmental Microbiology, 69 (1), 562-567.

Desai, H., Biswal, N. R., & Paria, S. (2010). Rheological behavior of pyrophyllite-water slurry in the presence of anionic, cationic, and nonionic surfactants. Industrial & Engineering Chemistry Research, 49 (11), 5400–5406.

Drits, V. A., Derkowski, A., & McCarty, D. K., (2011). Kinetics of thermal transformation of partially de-hydroxylated pyrophyllite. American Mineralogist, 96, 1054–1069.

Đorđević, N., Adamović, M., Grubić, G., & Bočarov-Stančić, A. (2004). Uticaj organozeolita i uree na hemijski sastav i kvalitet silaže cele biljke kukuruza. Biotehnologija u stočarstvu, 20 (5-6), 187-194.

Đorđević, N., Grubić, G., & Adamović, M. (2005). The influence of zeolite addition on quality of fresh lucerne silage. Acta Agriculturae Serbica, 10 (19), 25-31.

Đorđević, N., Grubić, G., Adamović, M., Nježić, D., Nježić, A., & Stojanović, B. (2006). The influence of addition of zenural 70, urea and Min-a-Zel plus on chemical composition and quality of whole maize plant silage. Journal of Agricultural Sciences, 51 (1), 71-78.

Đorđević, N., Grubić, G., & Jokić, Ž. (2003). Osnovi ishrane domaćih životinja – praktikum. Univerzitet u Beogradu, Beograd: Poljoprivredni fakultet.

Erdemoglu, M., Erdemoglu, S., Sayılkan, F., Akarsu, M., Sener, S, & Sayılkanc, H. (2004). Organo-functional modified pyrophyllite: preparation, characterisation and Pb (II) ion adsorption property. Applied Clay Science, 27, 41 – 52.

Essalhi, A., Essalhi, M., Toummite, A., Mostadi, A. El., & Raddi, Y. (2017). Mineralogical and textural arguments for a metasomatic origin of the Ougnat pyrophyllite, Eastern Anti-Atlas, Morocco. Journal of Materials and Environmental Science, 8 (1), 22-32.

Grubić, G., & Adamović, M. (2003). Ishrana visokoproiz-vodnih krava (p. 201). Beograd: Institut PKB Agroekonomik.

Harbinja, M., Hodžić, A., Kaljanac, A., Selman, F., Radulović, D., Andrić, Lj., Stojanović, J., & Petrović, M. (2019). Pirofilit - mineral budućnosti za primenu u poljoprivredi unpublished monograph. AD Harbi, Sarajevo, Federacija BiH.

Ivetić, A., Đorđević, N., Radin, D., Stojić, P., Grubić, G., Stojanović, B. (2013). Značaj aerobne stabilnosti silirane stočne hrane. In Proceedings of XXVII Savetovanje agronoma, veterinara, tehnologa i agroekonomista, 19 (3-4), pp. 47-59.

Karnwal, A., & Bhardway, V. (2014). Bioremediation of heavy metals (Zn and Cr) using microbial biosurfactant. Journal of Environmental Research and Protection, 11, 29-33.

Keren, R., & Sparks, D. L. (1994). Effect of pH and ionic strength on boron adsorption by pyrophyllite. Soil Science Society of America Journal, 58, 1095-1100.

Kim, J. H., Lee, C. G., Park, J. A., & Kang, J. (2013). Use of pyrophyllite clay for fluoride removal from aqueous solution. Desalination and water treatment, 51 (16-18), 3408-3416.

Koljajić, V., Đorđević, N., Grubić, G., & Adamović, M. (2003). The influence of zeolite on the quality of fresh beet pulp silages. Journal of Agricultural Sciences, 48 (1), 77-84.

Marković, J., Blagojević, M., Kostić, I., Vasić T., Anđelković S., Petrović, M., & Štrbanović, R. (2018). Effect of bacterial inoculants application and seeding rate on common vetch-oat silage quality. Biotechnology in Animal Husbandry, 34 (2), 251-257.

Muck, R. E., Moser, L. E., & Pitt, R. E. (2003). Postharvest factors affecting ensiling. In D. R. Buxton, R. E. Muck & J. H. Harrison (Eds.), Silage Science and Technology (pp. 251-3049. Madison, WI, USA: Crop Science Society of America.

Obradović, M. (1965). Jedinice za određivanje hranljive vrednosti hraniva i njihovo određivanje. Beograd: Jugoslovenski poljoprivredno-šumarski centar i Institut za stočarstvo.

Pahlow, G., & Muck, R. E. (2009). Managing for improved aerobic stability. In Proceedings of the XV International Silage Conference (pp. 77-90). Madison, Wisconsin, USA.

Park, J., Kim, J. H., Lee C. G., & Kim, S. B. (2013). Pyrophyllite clay for bacteriophage MS2 removal in the presence of fluoride. Water Science & Technology Water Supply, 14 (3), 485.

Pravilnik. (1987). Pravilnik o metodama uzimanja uzoraka i metodama fizičkih, hemijskih i mikrobioloških analiza stočne hrane. Službeni list SFRJ, 15, methods 6 and 15.

Sánchez-Soto, P. J., Justo, A., & Pérez-Rodríguez, J. L. (1994). Grinding effect on kaolinite-pyrophyllite-illite natural mixtures and its influence on mullite formation. Journal of Materials Science, 29 (5), 1276-1283.

United States Food and Drug Administration. (2019). Part 573 - Food additives permitted in feed and drinking water of animals. Food and Drugs, Chapter I - Food and drug administration, Department of Health and Human Services, Subchapter E-Animal drugs, feeds, and related products. US FDA, Silver Spring, MD. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=573.900)

Vujanac, I., Adamović, M., Šamanc, H., Petrujkić, B., & Dimitrijević, B. (2005). Preveniranje kiselih indigestija goveda primenom mineralnih materija regulatora elektrohemijske reakcije sadržaja buraga. In Proceedings of the 7th Clinica Veterinaria (pp. 284-288). Ohrid, Macedonia.

Published
2020/11/18
Section
Short communication