INFLUENCE OF MOISTURE AND TEMPERATURE ON THE THERMAL PROPERTIES OF JACK BEAN SEEDS (CANAVALIA ENSIFORMIS)
Abstract
The thermal properties (specific heat capacity, thermal conductivity, and thermal diffusivity) of Jack bean seed (Canavalia ensiformis) were determined for designing the equipment necessary for thermal processes. These thermal properties were determined at 5, 10, 15, 20, and 25 % moisture contents and temperatures at 30, 40, and 50 º C using the KD2 Pro thermal analyzer. Results showed that the specific heat capacity ranged from 1.55 to 2.47 kJ/kgK, 1.26 to 1.84 kJ/kgK and 1.32 to 1.99 kJ/kgK; thermal conductivity 0.21 to 0.47 W/mK, 0.34 to 0.52 W/mK, and 0.26 to 0.60 W/mK and thermal diffusivity 0.25 to 0.41 x 10-7 m²/s, 0.32 to 0.57 x 10-7 m²/s, and 0.32 to 0.60 x 10-7 m²/s at 30, 40, and 50 °C respectively for the moisture ranges studied. The temperature and moisture content effects were not significant (p>0.05) with specific heat and thermal diffusivity but were significant (p<0.05) with thermal conductivity in third-order polynomial. A non-linear relationship was established between the three thermal properties and moisture content within the studied temperature range. The resulting regression models for the thermal properties gave a high coefficient of determination (R2≥0.7995) which implies that the parameters can be used to describe the relationships between temperature, moisture, and thermal properties of Jack bean seeds.
References
Abioye, A. O., Adekunle, A. A., & Agbasi-Ebere, V. (2016). Some moisture-dependent physical and thermal properties of bambara groundnut. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10(10), 65-74. https://doi.org/10.9790/2402-1010016574
Akpapunam, M. A., & Sefa-Dedeh, S. (1997). Jack bean (Canavalia ensiformis): Nutrition related aspects and needed nutrition research. Plant Foods for Human Nutrition, 50(2), 93-99. https://doi.org/10.1007/bf02436029
Aremu, A. K., & Fadele, O. K. (2010). Moisture dependence thermal properties of doum palm fruit (Hyphaene thebaica). Journal of Emerging Trends in Engineering and Applied Sciences, 1(2), 199-204.
Arinola, S. O., & Adesina, K. (2014). Effect of thermal processing on the nutritional, antinutritional, and antioxidant properties of Tetracarpidium conophorum (African walnut). Journal of Food Processing, 1-4. https://doi.org/10.1155/2014/418380
Aviara, N. A., & Haque, M. A. (2001). Moisture dependence of thermal properties of sheanut kernel. Journal of Food Engineering, 47(2), 109-113. https://doi.org/10.1016/S0260-8774(00)00105-9
Aviara, N. A., Haque, M. A., & Ogunjimi, L. A. O. (2008). Thermal properties of guna seeds. International Agrophysics, 22(4), 291-297.
Bart-Plange, A., Addo, A., Kumi, F., & Piegu, A. K. (2012). Some moisture dependent thermal properties of Cashew kernel (Anarcardium occidentale L.). Australian Journal of Agricultural Engineering, 3(2), 65-69.
Bitra, V. S. P., Banu, S., Ramkrishna, P., Narender, G., & Womac, A. R. (2010). Moisture dependent thermal properties of peanut pods, kernels, and shells. Journal of Food Engineering, 106(4), 503-512. https://doi.org/10.1016/j.biosystemseng.2010.05.016
Carson, J. K. (2017). Use of simple thermal conductivity models to assess the reliability of measured thermal conductivity data. International Journal of Refrigeration, 74, 458-464. https://doi.org/10.1016/j.ijrefrig.2016.10.024
Chakraborty, S. M., & Johnson, W. H. (1999). Specific heat of flue cured tobacco by differential scanning calorimeter. Transactions of the American Society of Agricultural Engineers, 15(5), 928-931.
Chandrasekar, V., & Viswanathan, R. (1999). Physical and thermal properties of coffee. Journal of Agricultural Engineering Research, 73(3), 227-234. https://doi.org/10.1006/jaer.1999.0411
Chauhan, B., & Gupta, R. (2004). Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochemistry, 39(12), 2115-2122. https://doi.org/10.1016/j.procbio.2003.11.002
Embaby, H. E. S. (2010). Effect of heat treatments on certain antinutrients and in vitro protein digestibility of peanut and sesame seeds. Food Science and Technology Research, 17(1), 31-38. https://doi.org/10.3136/fstr.17.31
Gabriel, R. A. O., Akinyosoye, F. A., & Adetuyi, F. C. (2011). Nutritional composition of Canavalia ensiformis (L.) (Jack beans) as affected by the use of mould starter cultures for fermentation. Trends in Applied Sciences Research, 6, 463-471. https://dx.doi.org/10.3923/tasr.2011.463.471
Gharibzahedi, S. M. T., Etemad, V., Mirarab-Razi, J., & Foshat, M. (2010). Study on some engineering attributes of pine nut (Pinus pinea) to the design of processing equipment. Research in Agricultural Engineering, 56(3), 99-106.
Gharibzahedi, S. M. T., Ghahderijani, M., & Lajevardi, Z. S. (2013). Specific heat, thermal conductivity and thermal diffusivity of red lentil seed as a function of moisture content. Journal of Food Processing and Preservation, 38(4), 1807-1811. https://doi.org/10.1111/jfpp.12151
Hsu, R. H., Mannapperuma, J. D., & Singh, R. P. (1991). Physical and thermal properties of pistachios. Journal of Agricultural Engineering Research, 49, 311-321. https://doi.org/10.1016/0021-8634(91)80047-I
Isa, J., Oladele, S. O., & Akinlade, E. S. (2014). The effect of moisture content on thermal properties of some selected species of Egusi melon (Colocynthis citrillus L.). International Journal of Emerging Technology and Advanced Engineering, 4(4), 580-586.
Koocheki, A., Taherian, A. R., Razavi, S. M., & Bostan, A. (2009). Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocolloids, 23(8), 2369-2379. https://doi.org/10.1016/j.foodhyd.2009.06.014
Kurozawa, L. W., Park, K. J., & Azonbel, P. M. (2008). Thermal conductivity and thermal diffusivity of papaya (Carica papaya L.) and cashew apple (Anacardium occidentale L.). Brazilian Journal of Food Technology, 11(1), 78-85.
Marimuthu, M., & Gurumoorthi, P. (2013). Physicochemical and functional properties of starches from Indian Jack bean (Canavalia ensiformis), an underutilized wild food legume. Journal of Chemical and Pharmaceutical Research, 5(1), 221-225.
Michael, K. G., Sogbesan, O. A., & Onyia, L. U. (2018). Effect of processing methods on the nutritional value of Canavalia ensiformis Jack bean seed meal. Journal of Food Process Technology, 9(766). doi:10.4172/2157-7110.1000766
Oriola, K. O. (2014). Effects of ageing and moisture content on thermal properties of cassava roots using response surface methodology. International Journal of Applied Agricultural and Apicultural Research, 10(1&2), 54-63.
Oriola, K. O., Hussein, J. B., Oke, M. O., & Ajetunmobi, A. (2020). Description and evaluation of physical and moisture dependent thermal properties of Jack bean seeds (Canavalia ensiformis). Journal of Food Processing and Preservation, 45(2) e15166. https://doi.org/10.1111/JFPP.15166
Oriola, K. O., Oke, M. O., Hussein, J. B., & Adebesin, K. T. (2016). Thermal properties of cooked locust bean (Parkia biglobosa) seeds as affected by temperature-moisture interactions. Nigerian Journal of Horticultural Science, 21(2016), 48-56.
Osuigwe, D. I., Obiekezie, A. I., & Onuoha, G. C. (2006). Effects of jackbean seed meal on the intestinal mucosa of juvenile Heterobranchus longifilis. African Journal of Biotechnology, 5(13), 1294-1298. http://dx.doi.org/10.4314/ajb.v5i13.43101
Ranjeet, P., Singh, R. K. R., Varun, T., Mallesha & Raju, P. S. (2016). Nutritional evaluation of Canavalia ensiformis (Jack bean) cultivated in North East region of India. International Journal of Botany Studies, 1(6), 18-21.
Razavi, S. M. A., & Taghizadeh, M. (2007). The specific heat of pistachio nuts as affected by moisture content, temperature, and variety. Journal of Food Engineering, 79(1), 158-167. https://doi.org/10.1016/j.jfoodeng.2006.01.039
Sadiku, O. A., & Bamgboye, I. (2014). Moisture dependent mechanical and thermal properties of Locust bean (Parkia biglobosa). Agricultural Engineering International: CIGR Journal, 16(1), 99-106.
Singh, K. K., & Goswami, T. K. (2000). Thermal properties of cumin seed. Journal of Food Engineering, 45(4), 181-187. https://doi.org/10.1016/S0260-8774(00)00049-2
Subramanian, S., & Vistwanathan, R. (2003). Thermal properties of minor millet grains and flours. Biosystems Engineering, 84(3), 289-296.
Tansakul, A., & Lumyong, R. (2008). Thermal properties of straw mushroom. Journal of Food Engineering, 87, 91-98. https://doi.org/10.1016/j.jfoodeng.2007.11.016
Yang, W., Sokhansanj, S., Tang, J., & Winter, P. (2002). Determination of thermal conductivity, specific heat, and thermal diffusivity of borage seeds. Biosystems Engineering, 82(2), 169-176. https://doi.org/10.1006/bioe.2002.0066.