UTICAJ VLAGE I TEMPERATURE NA TOPLOTNA SVOJSTVA SEMENA PASULJA (CANAVALIA ENSIFORMIS)

  • Jelili Hussein Department of Food Science and Technology
  • Moruf Olanrewaju Oke Department of Food Engineering, Ladoke Akintola University of Technology Ogbomoso, Nigeria.
  • Kazeem Olaniyi Oriola Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
  • Abimbola Ajetunmobi Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
Ključne reči: Džek pasulj, leguminoza, sadržaj vlage, temperatura, termička svojstva, termalni analizator

Sažetak


Određena su toplotna svojstva (specifični toplotni kapacitet, toplotna provodljivost i toplotna difuzivnost) semena pasulja (Canavalia ensiformis) za korištenje u projektovanju opreme potrebne za toplotne procese. Toplinska svojstva određena pri 5, 10, 15, 20 i 25% udela vlage (wb) i temperaturama na 30, 40 i 50 ºC pomoću termalnog analizatora KD2 Pro. Rezultati su pokazali da se specifični toplotni kapacitet kretao od 1,55 do 2,47 kJ/kgK, 1,26 do 1,84 kJ/kgK i 1,32 do 1,99 kJ/kgK; toplotna provodljivost od 0,21 do 0,47 W/mK, 0,34 do 0,52 W/mK i 0,26 do 0,60 W/mK i toplotna difuzivnost od 0,25 do 0,41 x 10-7 m²/s, 0,32 do 0,57 x 10,3-7 m² i 10-7 m² do 0,60 x 10-7 m²/s na 30, 40, odnosno 50 °C za proučavane sadržaje vlage. Uticaj temperature i sadržaja vlage nije bio značajan (p>0,05) na specifičnu toplotu i toplotnu difuzivnost, ali je bio značajan (p<0,05) na toplotnu provodljivošću po polinomu trećeg reda. Utvrđen je nelinearni odnos između tri toplotna parametra i sadržaja vlage unutar proučavanog temperaturnog raspona. Rezultirajući regresioni modeli za toplotna svojstva dali su visoki koeficijent korelacije (R2 ≥ 0,7995), što ukazuje da se mogu koristiti za opisivanje odnosa između temperature, vlage i toplotnih svojstava semena Džek pasulja.

Reference

Abioye, A. O., Adekunle, A. A., & Agbasi-Ebere, V. (2016). Some moisture-dependent physical and thermal properties of bambara groundnut. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10(10), 65-74. https://doi.org/10.9790/2402-1010016574

Akpapunam, M. A., & Sefa-Dedeh, S. (1997). Jack bean (Canavalia ensiformis): Nutrition related aspects and needed nutrition research. Plant Foods for Human Nutrition, 50(2), 93-99. https://doi.org/10.1007/bf02436029

Aremu, A. K., & Fadele, O. K. (2010). Moisture dependence thermal properties of doum palm fruit (Hyphaene thebaica). Journal of Emerging Trends in Engineering and Applied Sciences, 1(2), 199-204.

Arinola, S. O., & Adesina, K. (2014). Effect of thermal processing on the nutritional, antinutritional, and antioxidant properties of Tetracarpidium conophorum (African walnut). Journal of Food Processing, 1-4. https://doi.org/10.1155/2014/418380

Aviara, N. A., & Haque, M. A. (2001). Moisture dependence of thermal properties of sheanut kernel. Journal of Food Engineering, 47(2), 109-113. https://doi.org/10.1016/S0260-8774(00)00105-9

Aviara, N. A., Haque, M. A., & Ogunjimi, L. A. O. (2008). Thermal properties of guna seeds. International Agrophysics, 22(4), 291-297.

Bart-Plange, A., Addo, A., Kumi, F., & Piegu, A. K. (2012). Some moisture dependent thermal properties of Cashew kernel (Anarcardium occidentale L.). Australian Journal of Agricultural Engineering, 3(2), 65-69.

Bitra, V. S. P., Banu, S., Ramkrishna, P., Narender, G., & Womac, A. R. (2010). Moisture dependent thermal properties of peanut pods, kernels, and shells. Journal of Food Engineering, 106(4), 503-512. https://doi.org/10.1016/j.biosystemseng.2010.05.016

Carson, J. K. (2017). Use of simple thermal conductivity models to assess the reliability of measured thermal conductivity data. International Journal of Refrigeration, 74, 458-464. https://doi.org/10.1016/j.ijrefrig.2016.10.024

Chakraborty, S. M., & Johnson, W. H. (1999). Specific heat of flue cured tobacco by differential scanning calorimeter. Transactions of the American Society of Agricultural Engineers, 15(5), 928-931.

Chandrasekar, V., & Viswanathan, R. (1999). Physical and thermal properties of coffee. Journal of Agricultural Engineering Research, 73(3), 227-234. https://doi.org/10.1006/jaer.1999.0411

Chauhan, B., & Gupta, R. (2004). Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochemistry, 39(12), 2115-2122. https://doi.org/10.1016/j.procbio.2003.11.002

Embaby, H. E. S. (2010). Effect of heat treatments on certain antinutrients and in vitro protein digestibility of peanut and sesame seeds. Food Science and Technology Research, 17(1), 31-38. https://doi.org/10.3136/fstr.17.31

Gabriel, R. A. O., Akinyosoye, F. A., & Adetuyi, F. C. (2011). Nutritional composition of Canavalia ensiformis (L.) (Jack beans) as affected by the use of mould starter cultures for fermentation. Trends in Applied Sciences Research, 6, 463-471. https://dx.doi.org/10.3923/tasr.2011.463.471

Gharibzahedi, S. M. T., Etemad, V., Mirarab-Razi, J., & Foshat, M. (2010). Study on some engineering attributes of pine nut (Pinus pinea) to the design of processing equipment. Research in Agricultural Engineering, 56(3), 99-106.

Gharibzahedi, S. M. T., Ghahderijani, M., & Lajevardi, Z. S. (2013). Specific heat, thermal conductivity and thermal diffusivity of red lentil seed as a function of moisture content. Journal of Food Processing and Preservation, 38(4), 1807-1811. https://doi.org/10.1111/jfpp.12151

Hsu, R. H., Mannapperuma, J. D., & Singh, R. P. (1991). Physical and thermal properties of pistachios. Journal of Agricultural Engineering Research, 49, 311-321. https://doi.org/10.1016/0021-8634(91)80047-I

Isa, J., Oladele, S. O., & Akinlade, E. S. (2014). The effect of moisture content on thermal properties of some selected species of Egusi melon (Colocynthis citrillus L.). International Journal of Emerging Technology and Advanced Engineering, 4(4), 580-586.

Koocheki, A., Taherian, A. R., Razavi, S. M., & Bostan, A. (2009). Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocolloids, 23(8), 2369-2379. https://doi.org/10.1016/j.foodhyd.2009.06.014

Kurozawa, L. W., Park, K. J., & Azonbel, P. M. (2008). Thermal conductivity and thermal diffusivity of papaya (Carica papaya L.) and cashew apple (Anacardium occidentale L.). Brazilian Journal of Food Technology, 11(1), 78-85.

Marimuthu, M., & Gurumoorthi, P. (2013). Physicochemical and functional properties of starches from Indian Jack bean (Canavalia ensiformis), an underutilized wild food legume. Journal of Chemical and Pharmaceutical Research, 5(1), 221-225.

Michael, K. G., Sogbesan, O. A., & Onyia, L. U. (2018). Effect of processing methods on the nutritional value of Canavalia ensiformis Jack bean seed meal. Journal of Food Process Technology, 9(766). doi:10.4172/2157-7110.1000766

Oriola, K. O. (2014). Effects of ageing and moisture content on thermal properties of cassava roots using response surface methodology. International Journal of Applied Agricultural and Apicultural Research, 10(1&2), 54-63.

Oriola, K. O., Hussein, J. B., Oke, M. O., & Ajetunmobi, A. (2020). Description and evaluation of physical and moisture dependent thermal properties of Jack bean seeds (Canavalia ensiformis). Journal of Food Processing and Preservation, 45(2) e15166. https://doi.org/10.1111/JFPP.15166

Oriola, K. O., Oke, M. O., Hussein, J. B., & Adebesin, K. T. (2016). Thermal properties of cooked locust bean (Parkia biglobosa) seeds as affected by temperature-moisture interactions. Nigerian Journal of Horticultural Science, 21(2016), 48-56.

Osuigwe, D. I., Obiekezie, A. I., & Onuoha, G. C. (2006). Effects of jackbean seed meal on the intestinal mucosa of juvenile Heterobranchus longifilis. African Journal of Biotechnology, 5(13), 1294-1298. http://dx.doi.org/10.4314/ajb.v5i13.43101

Ranjeet, P., Singh, R. K. R., Varun, T., Mallesha & Raju, P. S. (2016). Nutritional evaluation of Canavalia ensiformis (Jack bean) cultivated in North East region of India. International Journal of Botany Studies, 1(6), 18-21.

Razavi, S. M. A., & Taghizadeh, M. (2007). The specific heat of pistachio nuts as affected by moisture content, temperature, and variety. Journal of Food Engineering, 79(1), 158-167. https://doi.org/10.1016/j.jfoodeng.2006.01.039

Sadiku, O. A., & Bamgboye, I. (2014). Moisture dependent mechanical and thermal properties of Locust bean (Parkia biglobosa). Agricultural Engineering International: CIGR Journal, 16(1), 99-106.

Singh, K. K., & Goswami, T. K. (2000). Thermal properties of cumin seed. Journal of Food Engineering, 45(4), 181-187. https://doi.org/10.1016/S0260-8774(00)00049-2

Subramanian, S., & Vistwanathan, R. (2003). Thermal properties of minor millet grains and flours. Biosystems Engineering, 84(3), 289-296.

Tansakul, A., & Lumyong, R. (2008). Thermal properties of straw mushroom. Journal of Food Engineering, 87, 91-98. https://doi.org/10.1016/j.jfoodeng.2007.11.016

Yang, W., Sokhansanj, S., Tang, J., & Winter, P. (2002). Determination of thermal conductivity, specific heat, and thermal diffusivity of borage seeds. Biosystems Engineering, 82(2), 169-176. https://doi.org/10.1006/bioe.2002.0066.

Objavljeno
2021/12/07
Broj časopisa
Rubrika
Originalni naučni rad