EFFECT OF ALKALINE TREATMENTS IN LYE AND SLAKED LIME ON SOME NUTRIENTS, ANTINUTRIENTS AND IN VITRO PROTEIN DIGESTIBILITY OF EGYPTIAN RIVERHEMP (SESBANIA SESBAN) SEEDS
Abstract
Sesbania sesban is widely distributed in different parts of Nigeria and is used as forage or green manure. However, the levels of antinutritional factors associated with the seed limit its use as an alternative feed for livestock. Therefore, this study determined the effect of alkaline treatments on some nutrient and antinutrient composition and in vitro protein digestibility of the seed of S. sesban. The seeds were treated by soaking (for 24 hours) and boiling (for 30 minutes) in slaked lime (calcium hydroxide) or lye. Afterwards, the boiled and soaked samples were properly dried at room temperature. The samples were then analysed using standard methods for proximate analysis, antinutrients, and in vitro protein digestibility. It was revealed that crude protein content was significantly (p<0.05) higher for samples boiled in slake lime (BSL) and in lye (BL) compared to unprocessed sample (RS), whereas carbohydrate content showed a significant (p<0.05) reduction in BSL compared to the RS. Regarding antinutrient content, the treatments caused a significant (p<0.05) reduction in tannins (37.1-76.5%) and trypsin inhibitors (34.2-68.0%), as compared to RS. The treatments were also effective in the reduction of saponins, oxalates, phytates and cyanogenic glycosides. In vitro protein digestibility was significantly higher in the treated seeds, following the order: boiling in lye>boiling in slaked lime> soaking in slaked lime>soaking in lye. The seeds of S. sesban, if properly processed using lye, could serve as a potential alternative compound for livestock feed. The results of this research confirmed that treatments with lye, which is much less costly and more available to rural communities are comparable to those based on slaked lime and can be used interchangeably.
References
Abdulwaliyu, I., Idowu, O. O., Arekemase, S. O., Batari, M. L., Nkeonye, O. L., & Odjobo, B. O. (2018). The nutritional potential of Senna alata seed. International Food Research Journal, 25(6), 2628-2633.
Abdulwaliyu, I., Arekemase, S. O., Adudu, J. A., Batari, M. L., Egbule, M. N., & Okoduwa, S. I. R. (2019). Investigation of the medicinal significance of phytic acid as an indispensable antinutrient in diseases. Clinical Nutrition Experimental, 28, 42-61. https://doi.org/10.1016/j-yclinex.2019.10.002
Adeleke, O. R., Adiamo, O. Q., Fawale, O. S., & Olamiti, G. (2017). Effect of soaking and boiling on antinutritional factors, oligosaccharide contents and protein digestibility of newly developed Bambara groundnut cultivars. Turkish Journal of Agriculture Food Science and Technology, 5(9), 1006-1014. https://doi.org/10.24925/turjaf.v5i9.1006-1014.949
AOAC. (1990). Official Methods of Analysis (15th ed.). Arlington, VA: Association of Official Analytical Chemists.
AOAC. (1992). Total, Soluble, and Insoluble dietary fibre in foods. Enzymatic gravimetric method (15th ed.). Arlington, VA: Official Method of Analysis of the Association of Official Analytical Chemists.
AOAC. (2003). Official Methods of Analysis of Analytical of chemists, (17th ed.). Arlington, VA: Association of Official Analytical Chemists.
Arekemase, S. O., Abdulwaliyu, I., Dakare, M. A., Bala, S., Ibraheem, A. S., & Nkeonye, O. L. (2013). Quantitative evaluation of the nutritional constituents of Sesbania sesban Seeds and Pods. International Journal of Modern Plant and Animal Sciences, 1(1), 16-27.
Azizah, A. H., & Zainon, H. (1997). Effect of processing on dietary fiber contents of selected legumes and cereals. Malaysian Journal of Nutrition, 3, 131-136.
Bassaganya-Riera, J., Berry, E. M., Blaak, E. E., Burlingame, B., leCoutre, J., van Eden,W., El-Sohemy, A., German, J. B., Knorr, D., Lacroix, C., Muscaritoli, M., Nieman, D. C., Rychlic, M., Scholey, A., & Serafini, M. (2021). Goals in nutrition science 2020-2025. Frontiers in Nutrition, 7. https://doi.org/10.3929/ethz-b-000474379
Boisen, S. (2000). In vitro digestibility methods: History and specific approaches. In P. J. Moughan, M. W. A. Verstegen & M. Visser-Reyneveld (Eds.), Feed Evaluation. Principles and practice (pp. 153-168). The Netherlands: Wageningen Pers.
Centingul, I. S., & Yardimci, M. (2008). The importance of fats in farm animal nutrition. Kocatepe Veterinary Journal, 1, 77-81.
Chen, C. C., Shih, Y. C., Chiou, P. W. S., & Yu, B. (2010). Evaluating nutritional quality of single stage and two stage fermented soybean meal. Asian-Australian Journal of Animal Science, 23(5), 598-606. https://doi.org/ 10.5713/ajas.2010.90341
Dakare, M. A., Ameh, D. A., Agbaji, A. S., & Atawodi, S. E. (2011). Effect of processing techniques on the nutritional and antinutritional contents of mango (Magnifera indica) seed kernel. World Journal of Young Researchers, 2(3), 78-83.
Day, R. A., & Underwood, A. L. (1986). Quantitative analysis (5th ed., pp 701), Hoboken, NJ: Prentice-Hall Publication.
Duke, J. A. (1981). Handbook of legumes of world economic importance (pp. 170-184). New York, NY: Springer.
Duodu, K. G., Minnaqr, A., & Taylor, J. R. N. (1999). Effect of cooking and irradiation as the labile vitamins and antinutrients content of a traditional Africa Sorghum porridge and spinach relish. Journal of Food Chemistry, 66, 21-27.
Etiosa, O. R., Chika, N. B., & Benedicta, A. (2017). Mineral and proximate composition of soybean. Asian Journal of Physical and Chemical Science, 4(3), 1-6. Article no. AJOPACS.38530.
Gemede, H. F., Haki, G. D., Beyene, F., Woldegiorgis, A. Z., & Rakshit, S. K. (2016). Proximate, and antinutritional composition of indigenous okra (Abelmoschus esculentus) pod accession: implications for minerals bioavailability. Food Science and Nutrition, 4(2), 223-233.
Gilani, G. S., Cockell, K. A., & Sepehr, E. (2005). Effect of antinutritional factors on protein digestibility and amino acids availability in foods. Journal of AOAC International, 88(3), 967-987. http://dx.doi.org/10.1093/jaoac/88.3.967
Gopalakrishna, T., & Joshi-Saha, A. (2007). Agromorphological and molecular variability in the genus Sesbania. Genetic Resources and Crop Evolution, 54, 1727-1736. https://doi.org/10.1007/s10722-006-9182-5
Hossain, M. A., & Becker, K. (2001). Nutritive value and antinutritional factors in different varieties of Sesbania seed of beans and their morphological factors. Journal of Food Chemistry, 73(4), 421-431. https://doi.org/10.1016/S0308-8146(00)00317-4
Ishola, D. T., Olabiran, T. E., Olajide, M. B., Ishola, O. T., Alejo, A. O., Awonyemi, I. O., & Ajayi, O. B. (2018). Comparative evaluation of the proximate composition of raw and fermented seeds of Zarmarkee, Sesbania Spp. IOSR Journal of Agriculture and Veterinary Science, 11(6), 20-25. https://doi.org/10.9790/2380-1106022025
Joshua, Z. P., Timothy, A. G., & Suleiman, M. M. (2012). Effect of cooking time on the vitamin C, dietary fiber and mineral composition of some local vegetables. Science World Journal, 7(1), 29-30.
Kiarie, E. G., & Mills, A. (2019). Role of feed processing on gut health and function in pigs and poultry: Conundrum of optimal particle size and hypothermal regimens. Frontier Veterinary Science, 6(19). https://doi.org/10.3389%2Ffvets.2019.00019
Kumoro, A. C., Budiyati, C. S., & Retnowati, D. S. (2014). Calcium oxalate reduction during soaking of giant taro (Alocasia acrorrhiza (L.) Schott.) corn chips in sodium bicarbonate solution. International Food Research Journal, 21(4), 1583-1588.
Lolas, G. M. & Markakis, P. (1975). Phytic acid and other phosphorus compounds of beans (Phaseolus vulgaris). Journal of Agriculture and Food Chemistry, 23(1), 13-15. https://doi.org/10.1021/jf60197a016
Makatiani, E. T., & Odee, D. W. (2007). Response of Sesbania sesban (L) Merr. to rhizobial inoculation in an N- deficient soil containing low numbers of effective indigenous rhizobial. Agroforestry System, 70, 211-216. https://doi.org/10.1007/s10457-007-9054-9
Mamiro, P. S., Mwanri, A. W., Mongi, R. J., Chivaghula, T. J., Nyagaya, M., & Ntwenya, J. (2017). Effect of cooking on tannin and phytate content in different bean (Phaseolus vulgaris) varieties grown in Tanzania. African Journal of Biotechnology, 16(20), 1186-1191. http://dx.doi.org/10.5897/AJB2016.15657
Mengesha, M. (2012). The issue of feed-food competition and chicken production for the demands of foods of animal origin. Asian Journal of Poultry Science, 6, 31-43. https://dx.doi.org/10.3923/ajpsaj.2012.31.43
Mertz, E. T., Hassen, M. M., Cairs-Whittern, C., Kirleis, A. W., Tu, L., & Axtell J. D. (1984). Pepsin digestibility of proteins in sorghum and other major cereals. Proceedings of National Academy of Sciences, 81(1), 1-2. https://doi.org/10.1073/pnas.81.1.1
Nayak, K. C., Rath, S. C., Giri, S. S., & Mohanta, K. N. (2018). Evaluation of Dhaincha seed (Sesbania aculeate) as a non-conventional feed ingredient for Labeo rohita (Ham.) fry. International Journal of Fisheries and Aquatic studies, 6(2), 272-279.
Nkafamiya, I. I., Osemeahon, S. A., Andema, A. K., & Akinterinwa, A. (2015). Evaluation of cyanogenic glycosides contents in some edible nuts and seeds in Girei, Adamawa State, Nigeria, IOSR Journal of Environmental Science, Toxicology and Food Technology, 9(7), 27-33.
Onojah, P. K., & Odin, E. M. (2015). Cyanogenic glycoside in food plants. International Journal of Innovation in Science and Mathematics, 3(4), 197-200.
Onwuka, G. I. (2005). Food analysis and instrumentation: Theory and Practice (pp. 95-96). Lagos, Nigeria: Naphthalein Prints.
Osman, M. E., Ahmed, E. M., Barda, H. S., & Eltohami, M. S. (2015). Antioxidant and phytochemical properties of the seeds of Surib (Sesbania leptocarpa). World Journal of Pharmacy and Pharmaceutica. Science, 4(1), 1598-1604.
Pearson, D. A. (1976). Chemical analysis of foods (7th edition). Edinburgh,UK: Churchill Livingstone.
Poeydomenge, G. Y., & Savage, G. P. (2007). Oxalate content of raw and cooked purslane. Journal of Food Agriculture and Environment, 5(1), 124-128.
Prasad, M. S., Madhul C. H., Venkateshwalu, G., & Sabath, M. (2012). Quantitative evaluation of carbohydrate levels in different natural foodstuffs by UV-visible spectrophotometer. Asian Journal of Pharmaceutical analysis, 2(1), 10-11.
Pugalenthi. M., Vadivel, V., Gurumoorth, P., & Janardhanan, K. (2004). Comparative nutritional evaluation of little-known legumes, Tamarindus indica, Erythrina Indica and Sesbania bispinosa. Tropical and Subtropical Agroecosystems, 4(3), 107-123
Siddhuraju, P., Osoniyi, O., Makkar, H. P. S., & Becker, K. (2002). Effect of soaking and ionizing radiation on various antinutritional factors of seeds from different species of an unconventional legume, Sesbania and a common legume, green gram (Vigna radiata). Journal Food Chemistry, 79(3), 273-281. https://doi.org/10.1016/S0308-8146(02)00140-1
Siddhuraju, P., Vijayakumari, K., & Janardhanan, K. (1995). Studies on the underexploited legume, Indigofera linifolia and Sesbania bispinosa: nutrient composition and antinutritional factors. International Journal of Food Science and Nutrition, 46(3), 195-203. https://doi.org/10.3109/09637489509012549
Usman, M. A., Bolade, M. K., & Hussein, J. B. (2018). Selected antinutritional factors and in-vitro protein digestibility of some sorghum types as influenced by germinating time during malting. International Journal of Food Science and Biotechnology, 3(2), 40-45. doi:10.11648/j.ijfsb.20180302.11
Veasey, E. A., Schammass, E. A., Vencovsky, R., Martins, P. S., & Bandel, G. (1999). Morphological and agronomic characterization and estimates of genetic parameters of Sesbania Scop. (Leguminosae) accessions. Genetics and Molecular Biology, 22(1), 81-93. https://doi.org/10.1590/S1415-47571999000100017
Yusuf, M., Choudhury, J., Wahab, M. A., & Begum, J. (1994). Medicinal plant of Bangladesh (pp-223). Dhaka, Bangladesh: Bangladesh Council of Scientific and Industrial Research (BCSIR).