IN VITRO EVALUATION OF ANTIOXIDATIVE ACTIVITIES OF THE EXTRACTS OF PETALS OF PAEONIA LACTIFLORA AND CALENDULA OFFICINALIS INCORPORATED IN THE NEW FORMS OF BIOBASED CARRIERS

  • Petar Batinic Institute for Medicinal Plant Research "Dr. Josif Pančić"
Keywords: Antioxidative assays, microwave-assisted extraction, ultrasonic-assisted extraction, nanoemulsion, pectin film

Abstract


In this study, the petals collected from peony hybrid Paeonia lactiflora "Bowl of Beauty" and Calendula officinalis L. were extracted using an ethanol-water mixture assisted with microwave and ultrasonic treatment. The isolation of Calendula officinalis L. essential oil was done by hydrodistillation as well. The total phenolic and flavonoids content in the extracts and oil were determined and their antioxidant activity was evaluated. The highest total phenolic content was found for the extracts of hybrid Paeonia lactiflora and Calendula officinalis L. obtained by ultrasound extraction (83.16 and 114.47 mg GA/g, respectively), while the flavonoid content obtained by microwave-assisted extraction was relatively high (123.48 and 65.29 mg QE/g, respectively). The highest antioxidant activity was obtained in DPPH and ABTS•+ assay for the microwave-assisted extraction of hybrid P. lactiflora (79% and 83%) and ultrasound-assisted extraction of C. officinalis L. (45% and 49%), respectively. To improve antioxidant activity of both types of examined analytes (extracts and essential oil), the pectin biopolymer film (as a carrier) was prepared in the process of enzymatically assisted catalysis. Optical microscopy and FTIR spectroscopy were used for the characterization of obtained materials. The films, with essential oil of C. officinalis L. and gallic acid, showed significantly increased percentage inhibition in DPPH and ABTS•+ test (91% and 95%, respectively) after 10 minutes. The results, also, showed that all formulations of pectin biopolymer film, modified with gallic acid, can be successfully applied as a carrier for both types of ingredients.

References

 

Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338. https://doi.org/10.1016/j.foodhyd.2019.105338

Chen, Y., Xiao, H., Zheng, J., & Liang, G. (2015). Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: An experimental and theoretical evaluation. PLoS ONE, 10(3), 1-20. https://doi.org/10.1371/journal.pone.0121276

Demir, D., Ceylan, S., Göktürk, D., & Bölgen, N. (2020). Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scafolds. Polymer Bulletin, 78, 2211-2226. https://doi.org/10.1007/s00289-020-03208-1

Deuschle, V. C. K. N., Deuschle, R. A. N., Piana, M., Boligon, A. A., Bortoluzzi, M. R. B., Dal Prá, V., Dolwish, C. B., Lima, F. O., Carvalho, L. M. & Athayde, M. L. (2015). Phytochemical evaluation and in vitro antioxidant and photo-protective capacity of Calendula officinalis L. leaves. Revista Brasileira de Plantas Medicinais, 17, 4(1), 693-701. https://doi.org/10.1590/1983-084X/14_055

Dienaitė, L., Pukalskienė, M., Pukalskas, A., Pereira, C. V., Matias, A. A., & Venskutonis, P. R. (2019). Isolation of strong antioxidants from Paeonia officinalis roots and leaves and evaluation of their bioactivities. Antioxidants, 8(8). https://doi.org/10.3390/antiox8080249

Freeman, B. A., & Crapo, J. D. (1982). Biology of disease: free radicals and tissue injury. Laboratory Investigation, a  Journal of Technical Methods and Pathology, 47(5), 412-426.

Gazim, Z. C., Rezende, C. M., Fraga, S. R., Svidzinski, T. I. E., & Cortez, D. A. G. (2008). Antifungal activity of the essential oil from Calendula officinalis L. (Asteraceae) growing in Brazil. Brazilian Journal of Microbiology, 39(1), 61-63. https://doi.org/10.1590/S1517-83822008000100015

Gunes, A., Zengin, G., Sinan, K. I., Mahomoodally, M. F., Picot-Allain, M. C. N., Cakir, O., Bensari, S., Yilmaz, M. A., Gallo, M., & Montesano, D. (2020). A comparative bio-evaluation and chemical profiles of Calendula officinalis L. extracts prepared via different extraction techniques. Applied Sciences, 10(17), 5920.  https://doi.org/10.3390/app10175920

He, D-Y. & Dai, S-M. (2011): Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine, Frontiers in Pharmacology, 2(10), 1-5. https://doi: 10.3389/fphar.2011.00010

Honớrio, I. C. G., Bonfim, F. P. G., Montoya, S. G., Casali, V. V. D., Leite, J. P. V. & Cecon, P. R. (2016). Growth, development and content of flavonoids in calendula (Calendula officinalis L.). Acta Scientiarum -  Agronomy, 38(1), 69-75. https://doi.org/10.4025/actasciagron.v38i1.25976

Kim, I. D. & Ha, B. J. (2009): Paeoniflorin protects RAW 264.7 macrophages from LPS-induced cytotoxicity and genotoxicity. Toxicology in Vitro, 23(6), 1014-1019. https://doi.org/10.1016/j.tiv.2009.06.019

Klemetsrud, T., Jonassen, H., Hiorth, M., Kjøniksen, A. L., & Smistad, G. (2013). Studies on pectin-coated liposomes and their interaction with mucin. Colloids and Surfaces B: Biointerfaces, 103, 158-165. https://doi.org/10.1016/j.colsurfb.2012.10.012

Milošević, M., Marinković, A., Petrović, P., Klaus, A., Nikolić, M., Prlainović, N., Cvijetić, I. (2020). Synthesis, characterization and SAR studies of bis(imino)pyridines as antioxidants, acetylcholinesterase ihibitors and antimicrobial agents. Bioorganic Chemistry, 102, 104073. https://doi.org/10.1016/j.bioorg.2020.104073 

Ognyanov, M., Georgiev, Y., Petkova, N., Ivanov, I., Vasileva, I., & Kratchanova, M. (2018). Isolation and characterization of pectic polysaccharide fraction from in vitro suspension culture of Fumaria officinalis L. International Journal of Polymer Science. 2018, 5705036, 13 pages. https://doi.org/10.1155/2018/5705036

Petkova, D., Mihaylova, D., Denev, P., & Krastanov, A. (2020). Antioxidant activity of some edible flowers water extracts from Bulgaria. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 77(1), 54-61. https://doi.org/10.15835/buasvmcn-fst:2019.0025

Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698

Rajbhar, K., Dawda, H., & Makundan, U. (2015). Polyphenols: method of extraction. Scientific Reviews & Chemical Communications, 77(1), 1-6.

Ramos, A., Edreira, A., Vizoso, A., Betancourt, J., López, M., & Décalo, M. (1998). Genotoxicity of an extract of Calendula officinalis L. Journal of Ethnopharmacology, 61(1), 49-55. https://doi.org/10.1016/S0378-8741(98)00017-8

Ray, P. D., Huang, B-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-990. https://doi.org/10.1016/j.cellsig.2012.01.008

Rocha, J. E., Guedes, T. T. A. M., Bezerra, C. F., Costa, M. do S., Campina, F. F., de Freitas, T. S., Souza, A. K., Sobral Souza, C. E., de Matos, Y. M. L. S., Pereira-Junior, F. N., da Silva, J. H., Menezes, I. R. A., Teixeira, R. N. P., Colares, A. V., & Coutinho, H. D. M. (2019). Identification of the gallic acid mechanism of action on mercury chloride toxicity reduction using infrared spectroscopy and antioxidant assays. International Biodeterioration and Biodegradation, 141, 24-29. https://doi.org/10.1016/j.ibiod.2018.07.002

Sabir, S. M., Khan, M. F., Rocha, J. B. T., Boligon, A. A., & Athayde, M. L. (2015). Phenolic profile, antioxidant activities and genotoxic evaluations of Calendula officinalis. Journal of Food Biochemistry, 39(3), 316-324. https://doi.org/10.1111/jfbc.12132

Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195-11200. https://doi.org/10.1021/jf303758j

Savi, P. D. R. S., Dos santos, L., Gonçalves, A. M., Biesek, S., & De Lima, C. P. (2017). Análise de flavonoides totais presentes em algumas frutas e hortaliças convencionais e orgânicas mais consumidas na região sul do Brasil. DEMETRA: Alimentação, Nutrição & Saúde, 12(1), 275-288. https://doi.org/10.12957/demetra.2017.22391

Singh, D., Rawat, M. S. M., Semalty, A., & Semalty, M. (2011). Gallic acid-phospholipid complex: Drug incorporation and physicochemical characterization. Letters in Drug Design & Discovery, 8(3), 284-291. https://doi.org/10.2174/157018011794578240

Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and atioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178. http://dx.doi.org/10.1016/S0076-6879(99)99017-1

Veličković, J. M., Dimitrijević, D. S., Mitić, S. S., Mitić, M. N. & Kostić, D. A. (2014). The determination of the phenolic composition, antioxidative activity and heavy metals in the extracts of Calendula officinalis L.  Advanced Technologies, 3(2), 46-51. https://doi.org/10.5937/savteh1402046V

Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016, 5692852, 13 pages. https://doi.org/10.1155/2016/5692852

Wathoni, N., Yuan Shan, C., Yi Shan, W., Rostinawati, T., Indradi, R. B., Pratiwi, R., & Muchtaridi, M. (2019). Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon, 13, 5(8), e02299. https://doi.org/10.1016/j.heliyon.2019.e02299

Wu, Y., Jiang, Y., Zhang, L., Zhou, J., Yu, Y., Zhou, Y., & Kang, T. (2021). Chemical profiling and antioxidant evaluation of Paeonia lactiflora Pall. “Zhongjiang” by HPLC–ESI–MS combined with DPPH assay. Journal of Chromatographic Science, 59 (9), 795-805. https://doi.org/10.1093/chromsci/bmab005

Zhang, G., Zheng, C., Huang, B., & Fei, P. (2020). Preparation of acylated pectin with gallic acid through the enzymatic method and their emulsifying properties, antioxidation activities and antibacterial activities. International Journal of Biological Macromolecules, 165(A), 198-204. https://doi.org/10.1016/j.ijbiomac.2020.09.195

Published
2022/04/28
Section
Original research paper