IN VITRO PROCENA ANTIOKSIDATIVNE AKTIVNOSTI EKSTRAKTA LATICA PAEONIA LACTIFLORA I CALENDULA OFFICINALIS UGRAĐENIH U NOVE FORME NOSAČA NA BIOBAZI

  • Petar Batinic Institute for Medicinal Plant Research "Dr. Josif Pančić"
Ključne reči: antioksidativna aktivnost, mikrotalasna ekstrakcija, ultrazvučna ekstrakcija, nanoemulzija, pektinski film

Sažetak


U ovom radu prikazana je ekstrakcija latica Paeonia lactiflora. i Calendula officinalis L.  pomoću mikrotalasne reaktor i ultarazvika u sistemu etanol-voda i izolacija etarskog ulja latica Calendula officinalis L. hidrodestilacijom. Određen je ukupan sadržaj fenola i flavonoida u ekstraktima i ulju i procenjena je antioksidativna aktivnost. Antioksidativna aktivnost je određena korišćenjem standardnih antioksidativnih in vitro DPPH i ABTS•+ testova. Najveći ukupan sadržaj fenola utvrđen je kod ekstrakata Paeonia lactiflora L. i Calendula officinalis L dobijenih ultrazvučnom ekstrakcijom (9,73 i 10,03 mg GA/mL RE, redom), dok je najveći sadržaj flavonoida dobijen ekstrakcijom uz pomoć mikrotalasnog reaktora (14,45 i 6,02 mg QE/mL RE, redom). Najveća antioksidativna aktivnost za ekstrakt Paeonia lactiflora dobijena je mikrotalasnom ekstrakcijom (79% i 83%), dok je za ekstrakt Calendula officinalis L. dobijena ultrazvučnom ekstrakcijom (45% i 49%) u DPPH i ABTS •+, redom. Da bi se poboljšala antioksidativna aktivnost ekstrakta i etarskog ulja, pripremljeni su pektinski filmovi sa galnom kiselinom, uz pomoć enzimatski potpomognute katalize za postizanje kovalentnog vezivanja za nosač. Za karakterizaciju dobijenih filmova korišćena je optička mikroskopija i FTIR spektroskopija. Filmovi sa esencijalnim uljem Calendula officinalis L. i galnom kiselinom, pokazali su značajno povećan procenat inhibicije u DPPH i ABTS•+ testu (91% i 95%, redom) nakon 10 minuta. Rezultati su, takođe, pokazali da se sve formulacije pektinskog biopolimernog filma, modifikovanog galnom kiselinom, mogu uspešno primenjivati kao nosač za oba tipa ingredijenata.

Reference

 

Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338. https://doi.org/10.1016/j.foodhyd.2019.105338

Chen, Y., Xiao, H., Zheng, J., & Liang, G. (2015). Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: An experimental and theoretical evaluation. PLoS ONE, 10(3), 1-20. https://doi.org/10.1371/journal.pone.0121276

Demir, D., Ceylan, S., Göktürk, D., & Bölgen, N. (2020). Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scafolds. Polymer Bulletin, 78, 2211-2226. https://doi.org/10.1007/s00289-020-03208-1

Deuschle, V. C. K. N., Deuschle, R. A. N., Piana, M., Boligon, A. A., Bortoluzzi, M. R. B., Dal Prá, V., Dolwish, C. B., Lima, F. O., Carvalho, L. M. & Athayde, M. L. (2015). Phytochemical evaluation and in vitro antioxidant and photo-protective capacity of Calendula officinalis L. leaves. Revista Brasileira de Plantas Medicinais, 17, 4(1), 693-701. https://doi.org/10.1590/1983-084X/14_055

Dienaitė, L., Pukalskienė, M., Pukalskas, A., Pereira, C. V., Matias, A. A., & Venskutonis, P. R. (2019). Isolation of strong antioxidants from Paeonia officinalis roots and leaves and evaluation of their bioactivities. Antioxidants, 8(8). https://doi.org/10.3390/antiox8080249

Freeman, B. A., & Crapo, J. D. (1982). Biology of disease: free radicals and tissue injury. Laboratory Investigation, a  Journal of Technical Methods and Pathology, 47(5), 412-426.

Gazim, Z. C., Rezende, C. M., Fraga, S. R., Svidzinski, T. I. E., & Cortez, D. A. G. (2008). Antifungal activity of the essential oil from Calendula officinalis L. (Asteraceae) growing in Brazil. Brazilian Journal of Microbiology, 39(1), 61-63. https://doi.org/10.1590/S1517-83822008000100015

Gunes, A., Zengin, G., Sinan, K. I., Mahomoodally, M. F., Picot-Allain, M. C. N., Cakir, O., Bensari, S., Yilmaz, M. A., Gallo, M., & Montesano, D. (2020). A comparative bio-evaluation and chemical profiles of Calendula officinalis L. extracts prepared via different extraction techniques. Applied Sciences, 10(17), 5920.  https://doi.org/10.3390/app10175920

He, D-Y. & Dai, S-M. (2011): Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine, Frontiers in Pharmacology, 2(10), 1-5. https://doi: 10.3389/fphar.2011.00010

Honớrio, I. C. G., Bonfim, F. P. G., Montoya, S. G., Casali, V. V. D., Leite, J. P. V. & Cecon, P. R. (2016). Growth, development and content of flavonoids in calendula (Calendula officinalis L.). Acta Scientiarum -  Agronomy, 38(1), 69-75. https://doi.org/10.4025/actasciagron.v38i1.25976

Kim, I. D. & Ha, B. J. (2009): Paeoniflorin protects RAW 264.7 macrophages from LPS-induced cytotoxicity and genotoxicity. Toxicology in Vitro, 23(6), 1014-1019. https://doi.org/10.1016/j.tiv.2009.06.019

Klemetsrud, T., Jonassen, H., Hiorth, M., Kjøniksen, A. L., & Smistad, G. (2013). Studies on pectin-coated liposomes and their interaction with mucin. Colloids and Surfaces B: Biointerfaces, 103, 158-165. https://doi.org/10.1016/j.colsurfb.2012.10.012

Milošević, M., Marinković, A., Petrović, P., Klaus, A., Nikolić, M., Prlainović, N., Cvijetić, I. (2020). Synthesis, characterization and SAR studies of bis(imino)pyridines as antioxidants, acetylcholinesterase ihibitors and antimicrobial agents. Bioorganic Chemistry, 102, 104073. https://doi.org/10.1016/j.bioorg.2020.104073 

Ognyanov, M., Georgiev, Y., Petkova, N., Ivanov, I., Vasileva, I., & Kratchanova, M. (2018). Isolation and characterization of pectic polysaccharide fraction from in vitro suspension culture of Fumaria officinalis L. International Journal of Polymer Science. 2018, 5705036, 13 pages. https://doi.org/10.1155/2018/5705036

Petkova, D., Mihaylova, D., Denev, P., & Krastanov, A. (2020). Antioxidant activity of some edible flowers water extracts from Bulgaria. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 77(1), 54-61. https://doi.org/10.15835/buasvmcn-fst:2019.0025

Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698

Rajbhar, K., Dawda, H., & Makundan, U. (2015). Polyphenols: method of extraction. Scientific Reviews & Chemical Communications, 77(1), 1-6.

Ramos, A., Edreira, A., Vizoso, A., Betancourt, J., López, M., & Décalo, M. (1998). Genotoxicity of an extract of Calendula officinalis L. Journal of Ethnopharmacology, 61(1), 49-55. https://doi.org/10.1016/S0378-8741(98)00017-8

Ray, P. D., Huang, B-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-990. https://doi.org/10.1016/j.cellsig.2012.01.008

Rocha, J. E., Guedes, T. T. A. M., Bezerra, C. F., Costa, M. do S., Campina, F. F., de Freitas, T. S., Souza, A. K., Sobral Souza, C. E., de Matos, Y. M. L. S., Pereira-Junior, F. N., da Silva, J. H., Menezes, I. R. A., Teixeira, R. N. P., Colares, A. V., & Coutinho, H. D. M. (2019). Identification of the gallic acid mechanism of action on mercury chloride toxicity reduction using infrared spectroscopy and antioxidant assays. International Biodeterioration and Biodegradation, 141, 24-29. https://doi.org/10.1016/j.ibiod.2018.07.002

Sabir, S. M., Khan, M. F., Rocha, J. B. T., Boligon, A. A., & Athayde, M. L. (2015). Phenolic profile, antioxidant activities and genotoxic evaluations of Calendula officinalis. Journal of Food Biochemistry, 39(3), 316-324. https://doi.org/10.1111/jfbc.12132

Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195-11200. https://doi.org/10.1021/jf303758j

Savi, P. D. R. S., Dos santos, L., Gonçalves, A. M., Biesek, S., & De Lima, C. P. (2017). Análise de flavonoides totais presentes em algumas frutas e hortaliças convencionais e orgânicas mais consumidas na região sul do Brasil. DEMETRA: Alimentação, Nutrição & Saúde, 12(1), 275-288. https://doi.org/10.12957/demetra.2017.22391

Singh, D., Rawat, M. S. M., Semalty, A., & Semalty, M. (2011). Gallic acid-phospholipid complex: Drug incorporation and physicochemical characterization. Letters in Drug Design & Discovery, 8(3), 284-291. https://doi.org/10.2174/157018011794578240

Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and atioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178. http://dx.doi.org/10.1016/S0076-6879(99)99017-1

Veličković, J. M., Dimitrijević, D. S., Mitić, S. S., Mitić, M. N. & Kostić, D. A. (2014). The determination of the phenolic composition, antioxidative activity and heavy metals in the extracts of Calendula officinalis L.  Advanced Technologies, 3(2), 46-51. https://doi.org/10.5937/savteh1402046V

Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016, 5692852, 13 pages. https://doi.org/10.1155/2016/5692852

Wathoni, N., Yuan Shan, C., Yi Shan, W., Rostinawati, T., Indradi, R. B., Pratiwi, R., & Muchtaridi, M. (2019). Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon, 13, 5(8), e02299. https://doi.org/10.1016/j.heliyon.2019.e02299

Wu, Y., Jiang, Y., Zhang, L., Zhou, J., Yu, Y., Zhou, Y., & Kang, T. (2021). Chemical profiling and antioxidant evaluation of Paeonia lactiflora Pall. “Zhongjiang” by HPLC–ESI–MS combined with DPPH assay. Journal of Chromatographic Science, 59 (9), 795-805. https://doi.org/10.1093/chromsci/bmab005

Zhang, G., Zheng, C., Huang, B., & Fei, P. (2020). Preparation of acylated pectin with gallic acid through the enzymatic method and their emulsifying properties, antioxidation activities and antibacterial activities. International Journal of Biological Macromolecules, 165(A), 198-204. https://doi.org/10.1016/j.ijbiomac.2020.09.195

Objavljeno
2022/04/28
Broj časopisa
Rubrika
Originalni naučni rad