REVIEW OF OCCURRENCE OF MYCOTOXINS IN SERBIAN FOOD ITEMS IN THE PERIOD FROM 2005 TO 2022
Abstract
This paper aimed to review the publications on mycotoxins’ presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
References
Accinelli, C., Abbas, H. K., Zablotowicz, R. M., & Wil-kinson, J. R. (2008). Aspergillus flavus aflatoxin occurrence and expression of aflatoxin biosynthesis genes in soil. Canadian Journal of Microbiology, 54(5), 371-379. https://doi.org/10.1139/W08-018>
Agriopoulou, S., Stamatelopoulou, E., & Varzakas, T. (2020). Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods. Foods, 9(2), 137.
https://doi.org/10.3390/foods9020137>
Alshannaq, A., & Yu, J. H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research, 14(6), 632. https://doi.org/10.3390/ijerph14060632>
Beltrán, E., Ibañez, M., Sancho, J. V., & Hernández, F. (2009). Determination of mycotoxins in different food commodities by ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. Rapid Communications in Mass Spectrometry, 23, 1801-1809.
https://doi: 10.1002/rcm.4077
Brodal, G., Hofgaard, I. S., Eriksen, G. S., Bernhoft, A., & Sundheim, L. (2016). Mycotoxins in organically versus conventionally produced cereal grains and some other crops in temperate regions. World Mycotoxin Journal, 9(5), 755-770.
https://doi.org/10.3920/WMJ2016.2040
Bryła, M., Ksieniewicz-Woźniak, E., Waśkiewicz, A., Szymczyk, K., & Jędrzejczak, R. (2018). Co-occurrence of nivalenol, deoxynivalenol and deoxy-nivalenol-3-glucoside in beer samples. Food Control, 92, 319-324.
https://doi.org/10.1016/j.foodcont.2018.05.011
Castaldo, L., Graziani, G., Gaspari, A., Izzo, L., Tolosa, J., Rodríguez-Carrasco, Y., & Ritieni A. (2019). Target analysis and retrospective screening of multiple mycotoxins in pet food using UHPLC-Q-Orbitrap HRMS. Toxins, 11(8), 434.
https://doi.org/10.3390/toxins11080434>
De Berardis, S., De Paola, E. L., Montevecchi, G., Garbini, D., Masino, F., Antonelli, A., & Melucci, D. (2018). Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Research International, 106, 677- 685.
https://doi.org/10.1016/j.foodres.2018.01.032>
EC (European Commission). (2006a). Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Official Journal of the European Union, L70, 12-34.
EC (European Commission). (2006b). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, L364, 5-24.
EFSA Panel on Contaminants in the Food Chain. (2013). Scientific opinion on risks for animal and public health related to the presence of nivalenol in food and feed: nivalenol in food and feed. EFSA Journal, 11, 3262.
https://doi.org/10.2903/j.efsa.2013.3262
FAO. (2007). Strengthening National Food Control Systems. A quick guide to assess capacity building needs. ftp://ftp.fao.org/docrep/fao/0010/a1142e/a1142e00.pdf
Frisvad, J. C., Hubka, V., Ezekiel, C. N., Hong, S. B., No-váková, A., Chen, A. J., Arzanlou, M., Larsen, T. O., Sklenář, F., Mahakarnchanakul, W., Samson, R. A., & Houbraken, J. (2019). Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Studies in Mycology, 93, 1-63.
https://doi.org/10.1016%2Fj.simyco.2018.06.001>
Garrido Frenich, A., Vidal Martínez, J. L., Romero-Gon-zález, R., & Aguilera-Luiz, M. (2009). Simple and high-throughput method for the multimycotoxin analysis in cereals and related foods by ultra-high performance liquid chromatography/tandem mass spectrometry. Food Chemistry, 117(4), 705-712. https://doi.org/10.1016/j.foodchem.2009.04.045>
Hartmann, N., Erbs, M., Forrer, H.-R., Vogelgsang, S., Wettstein, F. E., Schwarzenbach, R. P., & Bucheli, T. D. (2008a). Occurrence of zearalenone on Fusarium graminearum infected wheat and maize fields in crop organs, soil, and drainage water. Environmental Science and Technology, 42, 5455-5460. https://doi.org/10.1021/es8007326>
Hartmann, N., Erbs, M., Wettstein, F. E., Hörger, C. C., Vogelgsang, S., Forrer, H.-R., Schwarzenbach, R. P., & Bucheli, T. D. (2008b). Environmental exposure to estrogenic and other myco- and phytotoxins. Chimia, 62(5), 364-367.
http://dx.doi.org/10.2533/chimia.2008.364>
Herebian, D., Zühlke, S., Lamshöft, M., & Spiteller, M. (2009). Multi-mycotoxin analysis in complex biological matrices using LC-ESI/MS: Experimental study using triple stage quadrupole and LTQ-Orbitrap. Journal of Separation Science, 32(7), 939-948. https://doi.org/10.1002/jssc.200800589>
IARC. (1993). Monographs on the evaluation of carcinogenic risks to humans: some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. 56. International Agency for Research on Cancer, pp. 1–599.
IARC. (2012). Monographs on the evaluation of carcinogenic risks to humans: chemical agents and related occupations. A review of human carcinogens. 100. International Agency for Research on Cancer, pp. 224-248.
IARC. (2015). Mycotoxin control in low- and middle income countries. In IARC Working Group Report, ed. C.P. Wild, Miller, D. and J.D. Groopman, 9, pp. 31–42.
Iqbal, S. Z. (2021). Mycotoxins in food, recent development in food analysis and future challenges; a review. Current Opinion in Food Science, 42, 237-247. https://doi.org/10.1016/j.cofs.2021.07.003" target="_blank" rel="noopener">https://doi.org/10.1016/j.cofs.2021.07.003>
Izzo, L., Rodríguez-Carrasco, Y., Tolosa, J., Graziani, G., Gaspari, A., & Ritieni, A. (2020). Target analysis and retrospective screening of mycotoxins and pharmacologically active substances in milk using an ultra-high-performance liquid chromatography/high-resolution mass spectrometry approach. Journal of Dairy Science, 103, 1250-1260.
https://doi.org/10.3168/jds.2019-17277" target="_blank" rel="noopener">https://doi.org/10.3168/jds.2019-17277>
Jajić, I., Dudaš, T., Krstović, S., Krska, R., Sulyok, M., Bagi, F., Savić, Z., Guljaš, D., & Stankov, A. (2019). Emerging fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin in Serbian maize. Toxins, 11, 357.
https://doi.org/10.3390/toxins11060357
Jajić I., Krstović S., Kos J., & Abramović B. (2014). Incidence of deoxynivalenol in Serbian wheat and barley. Journal of Food Protection, 77(5), 853-858. https://doi.org/10.4315/0362-028x.jfp-13-329>
Janić Hajnal, E., Kos, J., Krulj, J., Krstović, S., Jajić, I., Pezo, L., Šarić, B., & Nedeljković, N. (2017). Aflatoxins contamination of maize in Serbia: the impact of weather conditions in 2015. Food Additives & Contaminants: Part A, 34(11), 1999-2010. https://doi.org/10.1080/19440049.2017.1331047
Janić Hajnal, E. J., Kos, J., Malachová, A., Steiner, D., Stranska, M., Krska, R., & Sulyok, M. (2020). Mycotoxins in maize harvested in Serbia in the period 2012-2015. Part 2: Non-regulated mycotoxins and other fungal metabolites. Food Chemistry, 317, 126409. https://doi.org/10.1016/j.foodchem.2020.126409>
Juraschek, L. M., Kappenberg, A., & Amelung, W. (2022). Mycotoxins in soil and environment. Science of the Total Environment, 814, 152425. https://doi.org/10.1016/j.scitotenv.2021.152425>
Khaneghah, A. M., Moosavi, M. H., Oliveira, C. A., Vanin, F., & Sant’Ana, A. S. (2020). Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: an overview. https://www.sciencedirect.com/journal/food-and-chemical-toxicology"> style="font-size: 9.0pt; font-family: 'Times New Roman','serif'; mso-bidi-font-weight: bold;">Food and Chemical Toxicology, 143, 111557. https://doi.org/10.1016/j.fct.2020.111557>
Kos, J., Janić Hajnal, E., Malachová, A., Steiner, D., Stranska, M., Krska, R., Poschmaier, B., & Sulyok, M. (2020). Mycotoxins in maize harvested in Republic of Serbia in the period 2012-2015. Part 1: Regulated mycotoxins and its derivatives. Food Chemistry, 312, 126034.
https://doi.org/10.1016/j.foodchem.2019.126034>
Kos, J., Janić Hajnal, E., Šarić, B., Jovanov, P., Nedeljković, N., Milovanović, I., & Krulj, J. (2017). The influence of climate conditions on the occurrence of deoxynivalenol in maize harvested in Serbia during 2013-2015. Food Control, 73, 734-740. https://doi.org/10.1016/j.foodcont.2016.09.022" target="_blank" rel="noopener">https://doi.org/10.1016/j.foodcont.2016.09.022>
Kos, J., Janić Hajnal, E., Šarić, Lj., Plavšić, D., Bursić, V., Vuković, G., & Lazarević, J. (2018). Influence of storage period on occurrence and distribution of aflatoxins and fungi in maize kernels. Food and Feed Research, 45(2), 97-106.
https://doi.org/10.5937/FFR1802097K>
Kos, J., Janić Hajnal, E., Škrinjar, M., Mišan, A., Mandić, A., Jovanov, P., & Milovanović, I. (2014a). Presence of Fusarium toxins in maize from Autonomous Province of Vojvodina, Serbia, Short communication. Food Control, 46, 98-101. https://doi.org/10.1016/j.foodcont.2014.05.010>
Kos, J., Lević, J., Ðuragić, O., Kokić, B., & Miladinović I. (2014b). Occurrence and estimation of aflatoxin M1 exposure in milk in Serbia. Food Control, 38, 41-46. https://doi.org/10.1016/j.foodcont.2013.09.060>
Kos, J., Mastilović, J., Janić Hajnal, E., & Šarić, B. (2013). Natural occurrence of aflatoxins in maize harvested in Serbia during 2009-2012. Food Control, 34, 31-34.
https://doi.org/10.1016/j.foodcont.2013.04.004" target="_blank" rel="noopener">https://doi.org/10.1016/j.foodcont.2013.04.004>
Kralj Cigić, H., & Prosen, H. (2009). An overview of conventional and emerging analytical methods for the determination of mycotoxins. International Journal of Molecular Sciences, 10(1), 62-115. https://doi.org/10.3390%2Fijms10010062>
Lee, H. J., & Ryu, D. (2017). Worldwide occurrence of mycotoxins in cereals and cereal derived food products: public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry, 65(33), 7034-7051.
https://doi.org/10.1021/acs.jafc.6b04847>
Leite, M., Freitas, A., Silva, A. S., Barbosa, J., & Ramos, F. (2021). Maize food chain and mycotoxins: A review on occurrence studies. Trends in Food Science & Technology, 115(2), 307-331.
http://dx.doi.org/10.1016/j.tifs.2021.06.045>
Liu, Y., Han, S., Lu, M., Wang, P., Han, J., & Wang, J. (2014). Modified QuEChERS method combined with ultra-high-performance liquid chromatography-tandem mass spectrometry for the simultaneous determination of 26 mycotoxins in sesame butter. Journal of Chromatography B, 970, 68-76. https://doi.org/10.1016/j.jchromb.2014.06.033
Lu, Q., Qin, J. A., Fu, Y. W., Luo J. Y., Lu J. H., Logrieco A. F., & Yang, M. H. (2020). Modified mycotoxins in foodstuffs, animal feed, and herbal medicine: A systematic review on global occurrence, transformation mechanism and analysis methods. Trends in Analytical Chemistry, 133, 116088.
https://doi.org/10.1016/j.trac.2020.116088>
Luo, S., Du, H., Kebede, H., Liu, Y., & Xing F. (2021). Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control, 127, 108120.
https://doi.org/10.1016/j.foodcont.2021.108120>
Maestroni, B., & Cannavan, A. (2011). Sampling strategies to control mycotoxins. In S. De Saeger (Ed.), Determining mycotoxins and mycotoxigenic fungi in food and feed (pp. 1-35). Cambridge, U.K.: Woodhead Publishing Limited.
Marin, S., Ramos, A. J., Cano-Sancho, G., & Sanchis, V. (2013). Mycotoxins: occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60, 218-237.
https://doi.org/10.1016/j.fct.2013.07.047>
Martos, P. A., Thompson, W., & Diaz, G. J. (2010). Multiresidue mycotoxin analysis in wheat, barley, oats, rye and maize grain by high-performance liquid chromatography-tandem mass spectrometry. World Mycotoxin Journal, 3, 205-223.
https://doi.org/10.3920/WMJ2010.1212>
Meneely, J. P., Ricci, F., Van Egmond, H. P., & Elliott, C. T. (2011). Current methods of analysis for the determination of trichothecene mycotoxins in food. Trends in Analytical Chemistry, 30(2), 192-203. https://doi.org/10.1016/j.trac.2010.06.012>
Milićević, D., Petronijević, R., Petrović, Z., Đjinović-Stojanović, J., Jovanović, J., Baltić, T., & Janković, S. (2019). Impact of climate changes on aflatoxin M1 contamination of raw milk with special focus on climate conditions in Serbia. Journal of the Science of Food and Agriculture, 99(11), 5202-5210. https://doi.org/10.1002/jsfa.9768>
Miraglia, M., De Santis, B., Minardi, V., Debegnach, F., & Brera, C. (2005). The role of sampling in mycotoxin contamination: an holistic view. Food Additives and Contaminants, 22, 31-36.
https://doi.org/10.1080/02652030500389055>
Misihairabgwi, J. M., Ezekiel, C. N., Sulyok, M., She-phard, G. S., & Krska, R. (2019). Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007-2016). Critical Reviews in Food Science and Nutrition, 59, 43-58.
https://doi.org/10.1080/10408398.2017.1357003 2
Muñoz, K., Buchmann, C., Meyer, M., Schmidt-Heydt, M., Steinmetz, Z., Diehl, D., Thiele-Bruhn, S., & Schaumann, G. E. (2017). Physicochemical and microbial soil quality indicators as affected by the agricultural management system in strawberry cultivation using straw or black polyethylene mulching. Applied Soil Ecology, 113, 36-44.
https://doi.org/10.1016/j.apsoil.2017.01.014" target="_blank" rel="noopener">https://doi.org/10.1016/j.apsoil.2017.01.014>
Muñoz, K., Schmidt-Heydt, M., Stoll, D., Diehl, D., Ziegler, J., Geisen, R., & Schaumann, G. E. (2015). Effect of plastic mulching on mycotoxin occurrence and mycobiome abundance in soil samples from asparagus crops. Mycotoxin Research, 31(4), 191-201. https://doi.org/10.1007/s12550-015-0231-9>
Narváez, A., Rodríguez-Carrasco, Y., Castaldo, L., Izzo, L., & Ritieni, A. (2020). Ultra-high- performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry for multi-residue analysis of mycotoxins and pesticides in botanical nutraceuticals. Toxins, 12(2), 114. https://doi.org/10.3390/toxins12020114"> style="font-size: 9.0pt; font-family: 'Times New Roman','serif'; mso-bidi-font-weight: bold;">>
Ostry, V., Malir, F., Toman, J., & Grosse, Y. (2017). Mycotoxins as human carcinogens – the IARC monographs classification. Mycotoxin Research, 33(1), 65-73. https://doi.org/10.1007/s12550-016-0265-7>
Pereira, V. L., Fernandes, J. O., & Cunha, S. C. (2014). Mycotoxins in cereals and related foodstuffs: a review on occurrence and recent methods of analysis. Trends in Food Science and Technology, 36, 96-136. https://doi.org/10.1016/j.tifs.2014.01.005" target="_blank" rel="noopener">https://doi.org/10.1016/j.tifs.2014.01.005>
Perrone, G., Ferrara, M., Medina, A., Pascale, M., & Magan, N. (2020). Toxigenic fungi and mycotoxins in a climate change scenario: ecology, genomics, distribution, prediction and prevention of the risk, a review. Microorganisms, 8, 1496. https://doi.org/10.3390/microorganisms8101496
Rahmani, A., Jinap, S., & Soleimany, F. (2009). Qualitative and quantitative analysis of mycotoxins. Comprehensive Reviews in Food Science and Food Safety, 8, 202-251. https://doi.org/10.1111/j.1541-4337.2009.00079.x
Rychlik, M., Humpf, H., Marko, D., Dänicke, S., Mally, A., Berthiller, F., Klaffke, H., & Lorenz, N. (2014). Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Research, 30(4), 197-205. https://doi.org/10.1007/s12550-014-0203-5
Scarpino, V., Vanara, F., Reyneri, A., & Blandino, M. (2020). Fate of moniliformin during different large-scale maize dry-milling processes. LWT - Food Science and Technology, 123, 1-7.https://doi.org/10.1016/j.lwt.2020.109098" target="_blank" rel="noopener">https://doi.org/10.1016/j.lwt.2020.109098>
Scarpino, V., Vanara, F., Sulyok, M., Krska, R., & Blandino, M. (2021). Fate of regulated, masked, emerging mycotoxins and secondary fungal me-tabolites during different large-scale maize dry-milling processes. Food Research International, 140, 109861. https://doi.org/10.1016/j.foodres.2020.109861>
Schollenberger, M., Müller, H.-M., Rüfle, M., Suchy, S., & Drochner, W. (2008). Redistribution of 16 fu-sarium toxins during commercial dry milling of maize. Cereal Chemistry, 85(4), 557-560. https://doi.org/10.1094/CCHEM-85-4-0557
Schuhmacher-Wolz, U., Heine, K., & Schneider, K. (2010). Report on toxicity data on trichothecene mycotoxins HT-2 and T-2 toxins. EFSA Journal. https://doi.org/10.2903/sp.efsa.2010.EN-65 Publ. 7
Sforza, S., Dall’Asta, C., & Marchelli, R. (2006). Recent advances in mycotoxin determination in food and feed by hyphenated chromatographic techniques/mass spectrometry. Mass Spectrometry Reviews, 25(1), 54-76. https://doi.org/10.1002/mas.20052
Smith, M.-C., Madec, S., Coton, E., & Hymery, N. (2016). Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins, 8(4), 94. https://doi.org/10.3390%2Ftoxins8040094>
Somsubsin, S., Seebunrueng, K., Boonchiangma, S., & Srijaranai S. (2018). A simple solvent based microextraction for high performance liquid chromatographic analysis of aflatoxins in rice samples. Talanta, 176, 172-177. https://doi.org/10.1016/j.talanta.2017.08.028
Stanković, S., Lević, J., Ivanović, D., Krnjaja, V., Stanković, G., & Tančić, S. (2012). Fumonisin B1 and its co-occurrence with other fusariotoxins in naturally-contaminated wheat grain. Food Control, 23(2), 384-388. https://doi.org/10.1016/j.foodcont.2011.08.003>
Streit, E., Schwab, C., Sulyok, M., Naehrer, K., Krska, R., & Schatzmayr, G. (2013). Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins, 5(3), 504-523. https://doi.org/10.3390/toxins5030504>
Sulyok, M., Berthiller, F., Krska, R., & Schuhmacher, R. (2006). Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Communications in Mass Spectrometry, 20(18), 2649-2659. https://doi.org/10.1002/rcm.2640>
Sulyok, M., Krska, R., & Schuhmacher, R. (2007a). A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantifi cation of 87 analytes and its application to semi-quantitative screening of moldy food samples. Analytical and Bioanalytical Chemistry, 389(5), 1505-1523. http://dx.doi.org/10.1007/s00216-007-1542-2>
Sulyok, M., Krska, R., & Schuhmacher, R. (2007b). Application of a liquid chromatography-tandem mass spectrometric method to multi-mycotoxin determination in raw cereals and evaluation of matrix effects. Food Additives and Contaminants, 24, 1184-1195. https://doi.org/10.1080/02652030701510004>
Sulyok, M., Krska, R., & Schuhmacher, R. (2010). Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chemistry, 119(1), 408-416. https://doi.org/10.1016/j.foodchem.2009.07.042>
Škrbić, B., Antić, I., & Cvejanov, J. (2017). Determination of mycotoxins in biscuits, dried fruits and fruit jams: an assessment of human exposure. Food Additives & Contaminants: Part A, 34(6), 1012-1025. https://doi.org/10.1080/19440049.2017.1303195>
Škrbić, B., Antić, I., & Živančev, J. (2015). Presence of aflatoxin M1 in white and hard cheese samples from Serbia. Food Control, 50, 111-117. https://doi.org/10.1016/j.foodcont.2014.08.031>
Škrbić, B., Koprivica, S., & Godula, M. (2013). Validation of a method for determination of mycotoxins subjected to the EU regulations in spices: The UHPLC-HESI-MS/MS analysis of the crude extracts. Food Control, 31(2), 461-466. https://doi.org/10.1016/j.foodcont.2012.11.004>
Škrbić, B., Malachova, A., Živančev, J., Veprikova, Z., & Hajslová, J. (2011). Fusarium mycotoxins in wheat samples harvested in Serbia: a preliminary survey. Food Control, 22, 1261-1267. https://doi.org/10.1016/j.foodcont.2011.01.027" target="_blank" rel="noopener">https://doi.org/10.1016/j.foodcont.2011.01.027>
Škrbić, B., Živančev, J., Antić, I., & Godula M. (2014a). Levels of aflatoxin M1 in different types of milk collected in Serbia: Assessment of human and animal exposure. Food Control, 40, 113-119. http://dx.doi.org/10.1016/j.foodcont.2013.11.039>
Škrbić, B., Živančev, J., & Godula M. (2014b). Multimycotoxin analysis of crude extracts of nuts with ultra-high performance liquid chromatography/tandem mass spectrometry. Journal of Food Composition and Analysis, 34(2), 171-177.
https://doi.org/10.1016/j.jfca.2014.03.002 lang="EN-US" style="font-size: 9.0pt; font-family: 'Times New Roman','serif';">
Škrbić, B., Živančev, J., Đurišić-Mladenović, N., & Go-dula, M. (2012). Principal mycotoxins in wheat flour from the Serbian market: levels and as-sessment of the exposure by wheat-based products. Food Control, 25, 389-396.
https://doi.org/10.1016/j.foodcont.2011.10.059" target="_blank" rel="noopener">https://doi.org/10.1016/j.foodcont.2011.10.059>
Tolosa, J., Rodríguez-Carrasco, Y., Ruiz, M. J., & Vila-Donat, P. (2021). Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: a review. Food and Chemical Toxicology, 158, 112661.
https://doi.org/10.1016/j.fct.2021.112661>
Tomašević, I., Petrović, J., Jovetić, M., Raičević, S., Milo-jević, M., & Miočinović, J. (2015). Two year survey on the occurrence and seasonal variation of aflatoxin M1 in milk and milk products in Serbia. Food Control, 56, 64-70. https://doi.org/10.1016/j.foodcont.2015.03.017>
Torović, L. (2015). Aflatoxin M1 in processed milk and infant formulae and corresponding exposure of adult population in Serbia in 2013-2014. Food Additives & Contaminants: Part B, 8, 235-244. http://dx.doi.org/10.1080/19393210.2015.1063094>
Torović, L., Popov, N., Živković-Baloš, M., & Jakšić, S. (2021). Risk estimates of hepatocellular carcinoma in Vojvodina (Serbia) related to aflatoxin M1 contaminated cheese. Journal of Food Composition and Analysis, 103, 104122.
https://doi.org/10.1016/j.jfca.2021.104122
Udovicki, B., Audenaert, K., De Saeger, S., & Rajkovic, A. (2018). Overview on the Mycotoxins Incidence in Serbia in the Period 2004-2016, review. Toxins, 10(7), 279. https://doi.org/10.3390/toxins10070279>
Udovicki, B., Tomić, N., Špirović Trifunović, B., Des-potović, S., Jovanović, J., Jacxsens, L., & Rajković A. (2021). Risk assessment of dietary exposure to aflatoxin B1 in Serbia. Food and Chemical Toxicology, 151, 112116. https://doi.org/10.1016/j.fct.2021.112116>
Vargas Medina, D. A., Bassolli Borsatto, J. V., Maciel, E. V. S., & Lanças, F. M. (2021). Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends in Analytical Chemistry, 135, 116156. https://doi.org/10.1016/j.trac.2020.116156>
Wang, S., Kong, W. J., & Yang, M. H. (2016). Simultaneous determination of 11 mycotoxins in malt by isotope internal standard-UPLC-MS/MS. Acta Pharmacologica Sinica, 5, 110-115.
http://dx.doi.org/10.16438/j.0513-4870.2015-0476>
Whitaker, T. B., & Wiser, E. H. (1969). Theoretical investigations into the accuracy of sampling shelled peanuts for aflatoxin. Journal of the American Oil Chemists Society, 46, 377-379.
https://doi.org/10.1007/BF02636869>
Zhang, L., Dou, X. W., Zhang, C., Logrieco, A. F., & Yang, M. H. (2018). A review of current methods for analysis of mycotoxins in herbal medicines. Toxins, 10(2), 65. https://doi.org/10.3390/toxins10020065>