CHARACTERIZATION OF SERBIAN SUNFLOWER HONEYS BY THEIR PHYSICOCHEMICAL CHARACTERISTICS
Abstract
Abstract: Five physicochemical parameters (water content, electrical conductivity, total acidity (pH), ash mass fraction and concentration of free acids) were analyzed in 15 sunflower honeys collected from several localities in Vojvodina, Republic of Serbia. The mean values of analyzed honeys were: water content 16.87%; concentration of free acids 27.43 mEq/kg; electrical conductivity 0.34 mS/cm; pH 3.64. The selected physicochemical characteristics of all honey samples from Serbia analyzed in this research can be considered to be within the parameters expected for sunflower honey in general. The values for ash mass fraction, electrical conductivity and concentration of free acids in all sunflower honey samples showed similar trends. High correlation was established between electrical conductivity and ash mass fraction. Statistically significant difference at p≤0.05 (p=0.017) was established only for average values of free acids concentration between honey samples originating from the localities Kanjiža and Čelarevo. All of the analyzed honeys were found to meet national and European legislation for all investigated parameters. Therefore, further research on physicochemical properties of sunflower honey is required to confirm the quality and authenticity of this product and for better understanding the benefits of this honey.
References
Accorti, M., Piazza, M. G., & Persano-Oddo, L. (1987). La conductivité électrique et le contenu en cendres du miel. Apiacta, 22, 19-20.
Acquarone, C., Buera, P., & Elizalde, B. (2007). Pattern of pH and electric conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chemistry, 101, 695-703. https://doi.org/10.1016/j.foodchem.2006.01.058
Alqarni, A. S., Owayss, A. A., & Mahmoud, A. A. (2012). Physicochemical chracteristics, total phenols and pigments of national and international honeys in Saudi Arabia. Arabian Journal of Chemistry, 9, 114-120. https://dx.doi.org/10.1016/j.arabjc.2012.11.013
Bogdanov, S., Jurendić, T., Sieber R., & Gallmann P. (2008). Honey for Nutrition and Health: A review. American Journal of the College of Nutrition, 27, 677-689.
Cavia, M. M., Fernández-Muiño, M. A., Alonso-Tore, S. R., Huidobro, J. F., & Sancho, M. T. (2007). Evolution of acidity of honeys from continental climates: Influence of induced granulation. Food Chemistry, 100, 1728-1733. https://doi.org/10.1016/j.foodchem.2005.10.019
Cimpoiu, C., Hosu, A., Miclaus, V., & Puscas, A. (2013). Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 100, 149-154. https://dx.doi.org/10.1016/j.saa.2012.04.008
Da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and autheticity. Food Chemistry, 196, 309-323. https://dx.doi.org/10.1016/j.foodchem.2015.09.051
Devillers, J., Morlot, M., Pham-Delègue, M. H., & Doré, J. C. (2004). Classification of monofloral honeys on their quality control data. Food Chemistry, 86, 305-312. https://doi.org/10.1016/j.foodchem.2003.09.029
El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Science, 60(2), 279-287. https://dx.doi.org/10.1016/j.aoas.2015.10.015
Escuredo, O., Dobre, I., Fernández-González, M., & Seijo, M. C. (2014). Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chemistry, 149, 84‒90. https://doi.org/10.1016/j.foodchem.2013.10.097
European Commission (2002). Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Communities, L10, 47‒52.
Giacomini, J. J., Leslie, J., Tarpy, D. R., Palmer-Young, E. C., Irwin, R. E., & Adler, L. S. (2018). Medicinal value of sunflower pollen against bee pathogenes. Scientific Reports, 8,14394. https://doi.org/10.1038/s41598-018-32681-y
International Honey Commission Methods (IHCM). (2009). Harmonised methods of the International Honey Commission Methods. Liebefeld, Switzerland: Swiss Bee Research Centre, FAM. http://www.bee-hexagon.net/en/network.htm
Juan-Borrás, M., Domenech, E., Hellebrandova, M., & Esriche, I. (2014). Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Research International, 60, 86-94. https://dx.doi.org/10.1016/j.foodres.2013.11.045
Karabagias, I. K., Badeka, A. V., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses. Food Chemistry, 165, 181-190. https://dx.doi.org/10.1016/j.foodchem.2014.05.033
Kaškonienė, V., Venskutonis, P. R., & Čeksterytė, V. (2010). Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. Food Science and Technology, 43, 801-807. https://doi.org/10.1016/j.lwt.2010.01.007
Kirs, E., Pall, R., Martverk, K., & Laos, K. (2011). Physicochemical and melissopalynological characterization of Estonian summer honeys. Procedia Food Science, 1, 616-624. https://doi.org/10.1016/j.profoo.2011.09.093
Kropf, U., Jamnik, M., Bertoncelj, J., & Golob T. (2008). Linear regression model of the ash mass fraction and electrical conductivity for Slovenian honey. Food Technology and Biotechnology, 46 (3), 335-340.
Lazarević, K. B. (2016). Fizičko-hemijska karakterizacija i klasifikacija meda sa teritorije Republike Srbije prema botaničkom i regionalnom poreklu primenom multivarijantne hemometrijske analize (PhD thesis). Univerzitet u Beogradu, Hemijski fakultet, Beograd, Srbija.
Lazarević, K. B, Andrić, F., Trifković, J., Tešić. Ž. LJ., & Milojković-Opsenica, D. M. (2012). Characterisation of Serbian unifloral honeys according to their physicochemical parameters. Food Chemistry, 132, 2060-2064. https://doi.org/10.1016/j.foodchem.2011.12.048
Lazarević, K. B., Jovetić, M. S., & Tešić, Ž. LJ. (2017). Physicochemical parameters as a tool for the assessment of origin of honey. Journal of AOAC International, 100, 4, 840‒851. https://doi.org/10.5740/jaoacint.17-0143
Lewoyehu, M., & Amare, M. (2019). Comparative assesment on selected physicochemical parameters and antioxidant and antimicrobial activities of honey samples from selected districts of the Amhara and Tigry regions, Ethiopia. Intenational Journal of Food Science, 2019, Article ID 4101695, 10 pages. https://doi.org/10.1155/2019/4101695
Mračević, S. Đ., Krstić, M., Lolić, A., & Ražić, S. (2020). Comparative study of the chemical composition and biological potenial of honey from different regions of Serbia. Microchemical Journal, 152, 104420. https://dx.doi.org/10.1016/j.microc.2019.104420
Pravilnik. (2015). Pravilnik o kvalitetu meda i drugih pčelinjih proizvoda. Službeni glasnik RS, 101/2015.
Pita-Calvo, C., & Vásquez, M. (2017). Differences between honeydew and blossom honeys: A review. Trends in Food Science & Technology, 59, 79-87. https://dx.doi.org/10.1016/j.tifs.2016.11.015
Prica, N., Živkov-Baloš, M., Jakšić, S., Mihaljev, Ž., Kartalović, B., Babić, J., & Savić, S. (2014). Moisture and acidity as indicators of the quality of honey originating from Vojvodina region. Archives of Veterinary Medicine, 7(2), 99-109. https://doi.org/10.46784/e-avm.v7i2.135
Sakač, M., Jovanov, P., Marić, A., Tomičić, Z., Pezo, L., Dapčević Hadnađev, T., & Novaković, A. (2019). Free amino acid profiles of honey samples from Vojvodina (Republic of Serbia). Food and Feed Research, 46(2), 179-187. https://doi.org/10.5937/FFR1902179S
Sari, E., & Ayyildiz, N. (2012). Biological activities and some physicochemical properties of sunflower honeys collected from the Thrace region of Turkey. Pakistan Journal of Biological Sciences, 15(23), 1102-1110. https://doi.org/10.3923/pjbs.2012.1102.1110
Srinual, K., & Pilairuk, I. (2009). Effects of crystalization and processing on sensory and physicochemical qualities of Thai sunflower honey. Asian Journal of Food and Agro-Industry, 2(4), 749-754. https://www.cabdirect.org/cabdirect/abstract/20103303353#
Sousa, J. M. B., Soza, L. E., Marques, G., Benassi. M. T., Gullon, B., & Pintado, M. M. (2016). Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT-Food Science and Technology, 65, 645-651. https://dx.doi.org/10.1016/j.lwt.2015.08.058
Thrasyvoulou, A., & Manikis, J. (1995). Some physicochemical and microscopic characteristics of Greek unifloral honeys. Apidologie, 26(6), 441-452. https://hal.archives-ouvertes.fr/hal-00891310
Yadata, D. (2014). Detection of the electrical conductivity and acidity of honey from different areas of Tepi. Food Science and Technology, 2(5), 59-63. https://doi.org/10/13189/fst.2014.020501
Živkov Baloš, M., Popov, N., Vidaković, S., Ljubojević Pelić, D., Pelić, M., Mihaljev, Ž., & Jakšić, S. (2018). Electrical conductivity and acidity of honey. Archives of Veterinary Medicine, 11(1), 91-101. https://doi.org/10.46784/e-avm.v11i1.20
Živkov Baloš, M., Jakšić, S., Popov, N., Mihaljev, Ž., & Ljubojević Pelić, D. (2019). Comparative study of water content in honey produced in different years. Archives of Veterinary Medicine, 12(1), 43-53. https://doi.org/10.46784/e-avm.v12i1.42
Živkov Baloš, M., Popov, N., Prodanov Radulović, J., Stojanov, I., & Jakšić, S. (2020). Sugar profile of different floral origin honeys from Serbia. Journal of Apicultural Research, 59(4), 398-405. https://doi.org/10.1080/00218839.2020.1714193