THE INFLUENCE OF OIL CAKE GRANULATION AND ULTRASONIC PRETREATMENT ON THE PROPERTIES OF BIOPOLYMER FILMS BASED ON CAMELINA SATIVA OILSEED CAKE

  • Danijela Šuput Tehnološki fakultet Novi Sad, Univerzitet u Novom Sadu
  • Senka Popović
  • Nevena Hromiš
  • Slađana Rakita
  • Nedeljka Spasevski
  • Biljana Lončar
  • Tamara Erceg
  • Violeta Knežević
Keywords: agro-industrial waste, particle size, mucilge, barrier properties, mechanical properties, Z-score

Abstract


This study aimed at investigating the synthesis of biopolymer films based on the Camelina sativa cake, an agricultural waste which remains after cold pressing of the oil from seed. During the film synthesis, three different granulations of the camelina cake were used: the whole cake, fractions with a size of 180-250 µm and fractions smaller than 180 µm. Half of the samples were pretreated with an ultrasonic bath in order to examine the influence of the native mucilage from the cake on the properties of the obtained films. The biopolymer film samples were tested for mechanical, barrier, physicochemical and structural properties. The obtained films were dark, firm and flexible. Application of mucilage removal pretreatment contributed to lower tensile strength and higher elongation at break. Significantly lower water vapour permeability was recorded in the samples not pre-treated regarding mucilage removal. A foil with optimal physicochemical characteristics was produced using oilcake with a particle size less than 180 µm, regardless of the pre-treatment application. There were no structural differences or differences in thermal behaviour among the tested samples. Statistical analysis (Z-Score analysis) showed the sample CSoC˂180,wo was optimal due to good mechanical, barrier and physicochemical properties.

References

Abdelhedi, O., Nasri, R., Jridi, M., Kchaou, H., Nasreddine, B., & Karbowiak T. (2018). Composite bioactive films based on smooth-hound viscera proteins and gelatin: Physicochemical characterization and antioxidant properties. Food Hydrocolloids, 74, 176–86. https://doi.org/10.1016/J.FOODHYD.2017.08.006

Ağçeli, G. K. (2022). A new approach to nanocomposite carbohydrate polymer films: Levan and chia seed mucilage. International Journal of Biological Macromolecules, 218, 751-759. https://doi.org/10.1016/j.ijbiomac.2022.07.157

Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids, 28 (1), 189–99. https://doi.org/10.1016/j.foodhyd.2011.12.003

Aliheidari, N., Fazaeli, M., Ahmadi, R., Ghasemlou, M., & Emam-Djomeh, Z. (2013). Comparative evaluation on fatty acid and Matricaria recutita essential oil incorporated into casein-based film. International Journal of Biological Macromolecules, 56, 69–75. https://doi.org/10.1016/j.ijbiomac.2013.02.007

Arshad, M., Mohanty, K. A., Acker, R. V., Riddle, R., Todd, J., Khalil, H., Misra, M. (2022). Valorization of camelina oil to biobased materials and biofuels for new industrial uses: A Review. Royal Society of Chemistry Advances, 12, 27230–27245. https://doi.org/10.1039/D2RA03253H

ASTM D5576:00. (2013). Standard practice for determination of structural features in polyolefins and polyolefin copolymers by Infrared Spectro-photometry (FT-IR). West Conshohocken, PA: ASTM International,

Bacenetti, J., Restuccia, A., Schillaci, G., & Failla, S. (2017). Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment. Renewable Energy, 112, 444–456. https://doi.org/10.1016/j.renene.2017.05.044

Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690-710. https://doi.org/10.1016/j.indcrop.2016.09.034

Bulut, S., Popović, S., Hromiš, N., Šuput, D., Adamović, D., & Lazić, V. (2020). Incorporation of essential oils into pumpkin oil cake-based materials in order to improve their properties and reduce water sensitivity. Hemijska Industrija, 74 (5), 313-325. https://doi.org/10.2298/HEMIND200622026B

Bulut, S. (2021). Research of obtaining, characterization and optimization of properties of active, biode-gradable, packaging material based on pumpkin oil cake–(PhD thesis). University of Novi Sad, Faculty of Technology, Novi Sad, Serbia.

Čanak, P., Zanetti, F., Jovičić, D., Vujošević, B., Miladinov, Z., Stanisavljević, D., Mirosavljević, M., Alberghini, B., Facciolla, E., & Jeromela, A.M. (2022). Camelina germination under osmotic stress −Trend lines, time-courses and critical points. Industrial Crops and Products, 181, 114761. https://doi.org/10.1016/j.indcrop.2022.114761

Ćurčić, Lj., Lončar, B., Pezo, L., Stojić, N., Prokić, D., Filipović, V., & Pucarević M. (2022). Chemometric approach to pesticide residue analysis in surface water. Water, 14(24), 4089. https://doi.org/10.3390/w14244089

de Oliveira Filho, J. G., Lira, M. M., de Sousa, T. L., Campos, S. B., Lemes, A. C., & Egea, M. B. (2021). Plant-based mucilage with healing and anti-inflammatory actions for topical application: a review. Food Hydrocolloids for Health, 1(11), 100012. https://doi.org/10.1016/j.fhfh.2021.100012

Fabre, J. F., Lacroux, E., Gravé, G., & Mouloungui, Z. (2020). Extraction of camelina mucilage with ultrasound and high flow rate fluid circulation. Industrial Crops & Products, 144, 112057. https://doi.org/10.1016/j.indcrop.2019.112057

Filipović, V., Lončar, B., Filipović, J., Nićetin, M., Kne-žević, V., Šeregelj, V., Košutić, M., & Bodroža So-larov, M. (2022). Addition of combinedly dehydrated peach to the cookiesTechnological quality testing and optimization. Foods, 11(9), 1258. https://doi.org/10.3390/foods11091258

Hossain, Z., Johnson, E.N., Wang, L., & Blackshaw, R.E., Gan Y. (2019). Comparative analysis of oil and protein content and seed yield of five Brassicaceae oilseeds on the Canadian prairie. Industrial Crops and Products, 136, 77–86. https://doi.org/10.1016/j.indcrop.2019.05.001

Hosseini, S.F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Industrial Crops and Products, 67, 403–413. https://doi.org/10.1016/j.indcrop.2015.01.062

Hunsaker, D. J., French, A. N., Clarke, T. R., & El-Shikha, D. M. (2011). Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrigation Science, 29, 27–43. https://doi.org/10.1007/s00271-010-0213-9

Ibrahim, F. M., & El Habbasha, S. F. (2015). Chemical composition, medicinal impacts and cultivation of camelina (Camelina sativa). International Journal of PharmTech Research, 8, 114.

Ilić, P. N., Rakita, S. M., Spasevski, N. J., Đuragić, O. M., Marjanović Jeromela, A. M., Cvejić, S., & Zanetti, F. (2022). Nutritive value of Serbian camelina genotypes as an alternative feed ingredient. Food and Feed Research, 49(2), 209-221. https://doi.org/10.5937/ffr49-41060

ISO 2528:2017. (2017). Sheet materials. Determination of water vapour transmission rate (WVTR). Gravimetric (dish) method. Geneva, Switzerland: International Organization for Standardization.

Jackson, J.E. (2005). A user's guide to principal components (1st ed., pp. 263-341). John Wiley & Sons.

Jang, S-A., Lim, G-O. & Song, K. B. (2011). Preparation and mechanical properties of edible rapeseed protein films. Journal of Food Science, 76, C218-C223. https://doi.org/10.1111/j.1750-3841.2010.02026.x

Jiang, L., & Zheng, K. (2023). Xanthoceras sorbifolium Bunge leaf extract activated chia seeds mucilage/chitosan composite film: Structure, performance, bioactivity, and molecular dynamics per-spectives. Food Hydrocolloids, 144, 109050, https://doi.org/10.1016/j.foodhyd.2023.109050.

Juodka R, Nainienė R, Juškienė V, Juška R, Leikus R, Kadžienė G, & Stankevičienė D. (2022). Camelina (Camelina sativa (L.) Crantz) as feedstuffs in meat-type poultry diet: A source of protein and n-3 fatty acids. Animals, 12(3), 295. https://doi.org/10.3390/ani12030295

Kurasiak-Popowska, D., & Stuper-Szablewska, K. (2020). The phytochemical quality of Camelina sativa seed and oil. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 70 (1), 39-47. https://doi.org/10.1080/09064710.2019.1665706

Letcher, T. M. (2020). Plastic waste and recycling: Environmental impact, societal issues. Academic Press. https://doi.org/10.1016/B978-0-12-817880- 5.00004-9

Lopez, C., Sotin, H., Rabesona, H., Novales, B., Le Quéré, J. -M., Froissard, M., Faure, J. -D., Guyot, S., & Anton, M. (2023). Oil bodies from Chia (Salvia hispanica L.) and Camelina (Camelina sativa L.) seeds for innovative food applications: Microstructure, composition and physical stability. Foods, 12, 211. https://doi.org/10.3390/foods12010211

Marjanović Jeromela, A., Cvejić, S., Mladenov, V., Kuzmanović, B., Adamović, B., Stojanović, D., & Vollmann, J. (2021). Technological quality traits phenotyping of Camelina across multienvironment trials. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 71(8), 667-673. https://doi.org/10.1080/09064710.2021.1933162

Matthäus, B., & Zubr, J. (2000). Variability of specific components in Camelina sativa oilseed cakes. Industrial Crops and Products, 12, 9–18. https://doi.org/10.1016/S0926-6690(99)00040-0

Mirpoor, S. F., Giosafatto, C. V. L., & Porta, R. (2021). Biorefining of seed oil cakes as industrial co-streams for production of innovative bioplastics. A review. Trends in Food Science & Technology, 109, 259–270. https://doi.org/10.1016/j.tifs.2021.01.014

Mohammed, Y. A., Chen, C., & Afshar, R. K. (2017). Nutrient requirements of Camelina for biodiesel feedstock in Central Montana. Agronomy Journal, 109, 309–316. https://doi.org/10.2134/agronj2016.03.0163

Mondor, M., & Hernández-Álvarez, A.J. (2022). Camelina sativa composition, attributes, and applications: A review. European Journal of Lipid Science and Technology, 124, 2100035. https://doi.org/10.1002/ejlt.202100035

Neupane, D., Lohaus, R. H., & Solomon, J. K. Q., Cushman, J. C. (2022). Realizing the potential of Camelina sativa as a bioenergy crop for a changing global climate. Plants, 11, 772. https://doi.org/10.3390/plants11060772

Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-based sustainable food packaging materials: Challenges, solutions, and applications. Foods, 12(12):2422. https://doi.org/10.3390/foods12122422

Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M.L., & Marques, A. (2013). Hake proteins edible films incorporated with essential oils: Physical, mechanical, antioxidant and antibacterial properties. Food Hydrocolloids, 30(1), 224–231. https://doi.org/10.1016/j.foodhyd.2012.05.019

Popović, S. (2013). The study of production and characterization of biodegradable, composite films based on plant proteins (PhD thesis). University of Novi Sad, Faculty of Technology, Novi Sad, Serbia.

Popović, S., Lazić, V., Hromiš, N., Šuput, D., & Bulut S. (2018). Biopolymer packaging materials for food shelf-life prolongation (Chapter 8). In A. M. Gru-mezescu, & A. M. Holban, (Eds.), Biopolymers for food design (pp. 223-277). Academic Press, Elsevier. https://doi.org/10.1016/b978-0-12-811449-0.00008-6

Porta, R. (2019). The plastics sunset and the bio-plastics sunrise. Coatings, 9, 526. https://doi.org/10.3390/coatings9080526

Pradini, D., Juwono, H., Madurani, K. A., & Kurniawan, F. (2018). A preliminary study of identification halal gelatin using quartz crystal microbalance (QCM) sensor. Malaysian Journal of Fundamental and Applied Sciences, 14 (3), 325-330.

Qi, G., Li, N., Sun, X. S., Shi, Y., & Wang, D. (2016). Effects of glycerol and nanoclay on physioche-mical properties of camelina gum-based films. Carbohydrate Polymers, 152, 747–754. https://doi.org/10.1016/j.carbpol.2016.07.068

Rakita, S,, Kokić, B., Manoni, M., Mazzoleni, S., Lin, P., Luciano, A., Ottoboni, M., Cheli, F., & Pinotti, L. (2023). Cold-pressed oilseed cakes as alternative and sustainable feed ingredients: A Review. Foods, 12(3), 432. https://doi.org/10.3390/foods12030432

Riaz, R., Ahmed, I., Sizmaz, O., & Ahsan, U. (2022). Use of Camelina sativa and by-products in diets for dairy cows: A Review. Animals, 12, 1082. https://doi.org/10.3390/ani12091082

Salgado, P.R., López-Caballero, M.E., Gómez-Guillén, M.C., Mauri, A.N., & Montero, M.P. (2013). Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocolloids, 33(1), 74–84. https://doi.org/10.1016/j.foodhyd.2013.02.008

Sarv, V., Trass, O., & Diosady, L. L. (2017). Preparation and characterization of camelina sativa protein isolates and mucilage. Journal of the American Oil Chemists’ Society, 94(10), 1279–1285. https://doi.org/10.1007/s11746-017-3031-x

Semwal, A., Ambatipudi, K., & Navani, N.K. (2022). Development and characterization of sodium caseinate based probiotic edible film with chia mucilage as a protectant for the safe delivery of probiotics in functional bakery. Food Hydrocolloids for Health, 2, 100065. https://doi.org/10.1016/j.fhfh.2022.100065

Silva, L. A., Sinnecker, P., Cavalari, A. A., Sato, A. C. K., & Perrechil, F. A. (2022). Extraction of chia seed mucilage: Effect of ultrasound application. Food Chemistry Advances, 1, 100024. https://doi.org/10.1016/j.focha.2022.100024

Soukoulis, C., Gaiani, C., & Hoffmann, L. (2018). Plant seed mucilage as emerging biopolymer in food industry applications. Current Opinion in Food Science, 22, 28–42. https://doi.org/10.1016/j.cofs.2018.01.004

Sydor, M., Kurasiak-Popowska, D., Stuper-Szablewska, K., & Rogozinski, T. (2022). Camelina sativa. Status quo and future perspectives. Industrial Crops & Products, 187, 115531. https://doi.org/10.1016/j.indcrop.2022.115531

Šuput, D., Lazić, V., Popović, S., & Hromiš, N. (2015). Edible films and coatings – sources, properties and application. Food and Feed Research, 42(1), 11-22. https://doi.org/10.5937/FFR1501011S

Šuput, D., Lazić, V., Popović, S., Hromiš, N., Bulut, S., Pezo, L., & Banićević, J. (2018a). Effect of process parameters on biopolymer films based on sun-flower oil cake. Journal on Processing and Energy in Agriculture, 22 (3), 125-128.

Šuput, D., Popović, S., Hromiš, N., Bulut, S., Pezo, L., & Lazić, V. (2018b). Effect of plasticizer and pH values on properties of sunflower oil cake biodegradable films. In Proceedings of the 4th International Congress „Food Technology, Quality and Safety“and 18th International Symposium „Feed Technology” (FoodTech2018) (pp. 457-462). Novi Sad, Serbia.

Ubeyitogullari, A., & Ciftci, O. N. (2020). Fabrication of bioaerogels from camelina seed mucilage for food applications. Food Hydrocolloids, 102, 105597. https://doi.org/10.1016/j.foodhyd.2019.105597

USDA. (2023). Oilseeds: World Markets and Trade. United States Department of Agriculture Foreign Agricultural Service. https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade

Vartiainen, J., Vähä-Nissi, M., & Harlin, A. (2014). Bio-polymer films and coatings in packaging applications: A review of recent developments. Materials Sciences and Applications, 5, 708-718. http://dx.doi.org/10.4236/msa.2014.510072

Yang, Y., Gupta, V. K., Du, Y., Aghbashlo, M., Show, P. L., Pan, J., Tabatabaei, M., & Rajaei, A. (2023). Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review. International Journal of Biological Macromolecules, 242, 124800. https://doi.org/10.1016/j.ijbiomac.2023.124800

Published
2023/12/08
Section
Original research paper