ANTIOXIDANT AND ANTIMICROBIAL POTENTIAL OF BLACKBERRY POLYPHENOLIC EXTRACTS: INFLUENCE OF DIFFERENT EXTRACTION TECHNIQUES AND SOLVENTS

Keywords: blackberry, polyphenols, NADES, extraction techniques, antioxidants, antibacterial activity

Abstract


Blackberries (Rubus sp.) are considered a good source of bioactive compounds, especially polyphenols. The high antioxidant and antimicrobial activity associated with polyphenols offers the possibility of using blackberry extracts in various food applications. This study investigates the potential of blackberry extracts obtained with various solvents and extraction techniques as a source of natural antioxidants and antimicrobial compounds. Ethanol and two natural deep eutectic solvents (NADES) (N1 − choline chloride:glycerol (1:2) and N2 − choline chloride:lactic acid (1:4)) and three different extraction techniques (maceration, ultrasound-assisted extraction, and microwave-assisted extraction) were applied. The extracts were evaluated in terms of total monomeric anthocyanin content, polymeric color, total polyphenol content, and ferric reducing antioxidant power (FRAP). The antimicrobial potential against two Gram-positive and two Gram-negative bacteria, as well as one yeast, was assessed using agar diffusion and broth microdilution methods. The N2 solvent gave a better yield of bioactives than N1 and ethanol, while the microwave-assisted extraction had the most pronounced effect on the extracts' polyphenol content and color. All samples displayed significantly higher antimicrobial activity than the ethanolic extract, with the generally highest efficacy observed against Gram-positive bacteria. Overall, these preliminary results demonstrate the potential of acidic NADES for the extraction and application of blackberry polyphenols. Future steps should include extraction optimization and food application studies.

References

Babaoğlu, A. S., Unal, K., Dilek, N. M., Poçan, H. B., & Karakaya, M. (2022). Antioxidant and antimicrobial effects of blackberry, black chokeberry, blueberry, and red currant pomace extracts on beef patties subject to refrigerated storage. Meat Science, 187, 108765. https://doi.org/10.1016/j.meatsci.2022.108765

Benzie, I. F., & Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292

Bridgers, E. N., Chinn, M. S., & Truong, V. (2010). Extraction of anthocyanins from industrial purple-fleshed sweetpotatoes and enzymatic hydrolysis of residues for fermentable sugars. Industrial Crops and Products, 32(3), 613–620. https://doi.org/10.1016/j.indcrop.2010.07.020

Burdulis, D., Sarkinas, A., Jasutiené, I., Stackevicené, E., Nikolajevas, L., & Janulis, V. (2009). Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. PubMed, 66(4), 399–408. https://pubmed.ncbi.nlm.nih.gov/19702172

Bussiness Research Insights. (2025). Blackberry market size, share, growth and industry analysis, by type (trailing, erect, semi-erect), by application (online, offline), regional insights and forecast from 2025 to 2033. https://www.businessresearchinsights.com/market-reports/blackberry-market-108458

Cajnko, M. M., Vicente, F. A., Novak, U., & Likozar, B. (2023). Natural deep eutectic solvents (NaDES): Translating cell biology to processing. Green Chemistry, 25(22), 9045–9062. https://doi.org/10.1039/d3gc01913f

Četojević-Simin, D., Ranitović, A., Cvetković, D., Markov, S., Vinčić, M., & Djilas, S. (2017). Bioactivity of blackberry (Rubus fruticosus L.) pomace: Polyphenol content, radical scavenging, antimicrobial and antitumor activity. Acta Periodica Technologica, 48, 63–76. https://doi.org/10.2298/apt1748063c

De Mello, J. E., Luduvico, K. P., Santos, A. D., Teixeira, F. C., De Souza Cardoso, J., De Aguiar, M. S. S., Cunico, W., Vizzotto, M., Stefanello, F., & Spanevello, R. (2023). Therapeutic potential of blackberry extract in preventing memory deficits and neurochemical alterations in the cerebral cortex, hippocampus and cerebellum of a rat model with amnesia. Metabolic Brain Disease, 38(4), 1261–1272. https://doi.org/10.1007/s11011-023-01175-w

Gil-Martínez, L., Mut-Salud, N., Ruiz-García, J. A., Falcón-Piñeiro, A., Maijó-Ferré, M., Baños, A., De La Torre-Ramírez, J. M., Guillamón, E., Verardo, V., & Gómez-Caravaca, A. M. (2023). Phytochemicals determination, and antioxidant, antimicrobial, anti-inflammatory and anticancer activities of blackberry fruits. Foods, 12(7), 1505. https://doi.org/10.3390/foods12071505

Giusti, M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, 00(1). https://doi.org/10.1002/0471142913.faf0102s00

Jiang, T., Mao, Y., Sui, L., Yang, N., Li, S., Zhu, Z., Wang, C., Yin, S., He, J., & He, Y. (2018). Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food Chemistry, 274, 460–470. https://doi.org/10.1016/j.foodchem.2018.07.141

Kaume, L., Howard, L. R., & Devareddy, L. (2011). The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. Journal of Agricultural and Food Chemistry, 60(23), 5716–5727. https://doi.org/10.1021/jf203318p

Kopjar, M., Bilić, B., & Piližota, V. (2011). Influence of different extracts addition on total phenols, anthocyanin content and antioxidant activity of blackberry juice during storage. Croatian Journal of Food Science and Technology, 3(1), 9–15. https://hrcak.srce.hr/70914

Le, X. T., Huynh, M. T., Pham, T. N., Than, V. T., Toan, T. Q., Bach, L. G., & Trung, N. Q. (2019). Optimization of total anthocyanin content, stability and antioxidant evaluation of the anthocyanin extract from Vietnamese Carissa carandas L. fruits. Processes, 7(7), 468. https://doi.org/10.3390/pr7070468

Lee, J., Durst, R. W., Wrolstad, R. E., Eisele, T., Giusti, M. M., Hach, J., Hofsommer, H., Koswig, S., Krueger, D. A., Kupina, S., Martin, S. K., Martinsen, B. K., Miller, T. C., Paquette, F., Ryabkova, A., Skrede, G., Trenn, U., & Wightman, J. D. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88(5), 1269–1278. https://doi.org/10.1093/jaoac/88.5.1269

Liu, Y., Friesen, J. B., McAlpine, J. B., Lankin, D. C., Chen, S., & Pauli, G. F. (2018). Natural deep eutectic solvents: Properties, applications, and perspectives. Journal of Natural Products, 81(3), 679–690. https://doi.org/10.1021/acs.jnatprod.7b00945

Mani-López, E., García, H., & López-Malo, A. (2011). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45(2), 713–721. https://doi.org/10.1016/j.foodres.2011.04.043

Martins, M. A. R., Pinho, S. P., & Coutinho, J. A. P. (2018). Insights into the nature of eutectic and deep eutectic mixtures. Journal of Solution Chemistry, 48(7), 962–982. https://doi.org/10.1007/s10953-018-0793-1

Mišan, A., Nađpal, J., Stupar, A., Pojić, M., Mandić, A., Verpoorte, R., & Choi, Y. H. (2019). The perspectives of natural deep eutectic solvents in agri-food sector. Critical Reviews in Food Science and Nutrition, 60(15), 2564–2592. https://doi.org/10.1080/10408398.2019.1650717

Najjar, R. S., Knapp, D., Wanders, D., & Feresin, R. G. (2022). Raspberry and blackberry act in a synergistic manner to improve cardiac redox proteins and reduce NF-κB and SAPK/JNK in mice fed a high-fat, high-sucrose diet. Nutrition Metabolism and Cardiovascular Diseases, 32(7), 1784–1796. https://doi.org/10.1016/j.numecd.2022.03.015

Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. https://doi.org/10.4161/oxim.2.5.9498

Pavlić, B., Teslić, N., Zengin, G., Đurović, S., Rakić, D., Cvetanović, A., Gunes, A., & Zeković, Z. (2020). Antioxidant and enzyme-inhibitory activity of peppermint extracts and essential oils obtained by conventional and emerging extraction techniques. Food Chemistry, 338, 127724. https://doi.org/10.1016/j.foodchem.2020.127724

Robinson, J. A., Bierwirth, J. E., Greenspan, P., & Pegg, R. B. (2020). Blackberry polyphenols: Composition, quantity, and health impacts from in vitro and in vivo studies. Journal of Food Bioactives, 9, 9217. https://doi.org/10.31665/jfb.2020.9217

Shang, A., Luo, M., Gan, R., Xu, X., Xia, Y., Guo, H., Liu, Y., & Li, H. (2020). Effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus Rehd.). Antioxidants, 9(8), 678. https://doi.org/10.3390/antiox9080678

Song, R., Yang, P., Wei, R., & Ruan, G. (2016). Antioxidative, antibacterial, and food functional properties of the half-fin anchovy hydrolysates-glucose conjugates formed via Maillard reaction. Molecules, 21(6), 795. https://doi.org/10.3390/molecules21060795

Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: A review. Environmental Chemistry Letters, 19(4), 3409–3443. https://doi.org/10.1007/s10311-021-01217-8

Tatar, M., Bagheri, Z., Varedi, M., & Naghibalhossaini, F. (2018). Blackberry extract inhibits telomerase activity in human colorectal cancer cells. Nutrition and Cancer, 71(3), 461–471. https://doi.org/10.1080/01635581.2018.1506491

Terpinc, P., Čeh, B., Ulrih, N. P., & Abramovič, H. (2012). Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products, 39, 210–217. https://doi.org/10.1016/j.indcrop.2012.02.023

Tripathi, A., Pandey, V. K., Mishra, H., Dar, A. H., Singh, G., Rustagi, S., Sulaiman, G., & Jha, A. K. (2024). Enforcing the antioxidant properties of blackberries against breast cancer by activating different cell signaling mechanisms: An updated review. Food Bioscience, 62, 105266. https://doi.org/10.1016/j.fbio.2024.105266

Trusheva, B., Petkov, H., Chimshirova, R., Popova, M., Dimitrova, L., Zaharieva, M. M., Ilieva, Y., Vasileva, B., Tsvetkova, I., Najdenski, H., Miloshev, G., Georgieva, M., & Bankova, V. (2024). Insight into the influence of natural deep eutectic solvents on the extraction of phenolic compounds from poplar type propolis: Composition and in vitro biological activity. Heliyon, 10(7), e28621. https://doi.org/10.1016/j.heliyon.2024.e28621

Vidana Gamage, G. C., Goh, J. K., & Choo, W. S. (2024). Application of anthocyanins from black goji berry in fermented dairy model food systems: An alternate natural purple color. LWT, 198, 115975. https://doi.org/10.1016/j.lwt.2024.115975

Wang, Z., Zhang, Y., Tu, Z., Yu, C., Liu, R., Deng, Z., & Luo, T. (2024). The degradation and antioxidant capacity of anthocyanins from eggplant peels in the context of complex food system under thermal processing. Food Bioscience, 59, 103914. https://doi.org/10.1016/j.fbio.2024.103914

Yang, H., Hewes, D., Salaheen, S., Federman, C., & Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37, 15–20. https://doi.org/10.1016/j.foodcont.2013.08.042

Yu, Y., Shiau, S., Pan, W., & Yang, Y. (2024). Extraction of bioactive phenolics from various anthocyanin-rich plant materials and comparison of their heat stability. Molecules, 29(22), 5256. https://doi.org/10.3390/molecules29225256

Zhang, Y., Deng, Z., Li, H., Zheng, L., Liu, R., & Zhang, B. (2020). Degradation kinetics of anthocyanins from purple eggplant in a fortified food model system during microwave and frying treatments. Journal of Agricultural and Food Chemistry, 68(42), 11817–11828. https://doi.org/10.1021/acs.jafc.0c05224

Žilić, S., Kocadağlı, T., Vančetović, J., & Gökmen, V. (2015). Effects of baking conditions and dough formulations on phenolic compound stability, antioxidant capacity and color of cookies made from anthocyanin-rich corn flour. LWT, 65, 597–603. https://doi.org/10.1016/j.lwt.2015.08.057

Published
2025/11/05
Section
Original research paper