SUNFLOWER WAX-BASED OLEOGEL FROM OILS REFINING WASTES AS A SHORTENING ALTERNATIVE IN CUPCAKE

Keywords: sunflower wax, oleogel, shortening, cupcakes, saturated fatty acids, oil refining waste

Abstract


This investigation utilized sunflower wax, a by-product recovered from sunflower oil refining waste, to prepare a sunflower oil-based oleogel (SFW-BO) and evaluated its potential as a full replacement for conventional palm oil-based shortening (SH-BPO) in bakery applications. The novelty of this study lies in the use of sunflower wax obtained directly from oil refining waste, rather than commercial wax, emphasizing resource sustainability. Fourier-transform infrared (FTIR) spectroscopy confirmed the effectiveness of the purification process in producing high-purity wax. Physicochemical characterization demonstrated that 100% SFW-BO exhibited superior oil-binding capacity (OBC ≈ 99%) and a higher melting point (53.2°C) compared to SH-BPO (40.1°C). Fatty acid profiling revealed that increasing the proportion of SFW-BO significantly reduced saturated fatty acid content from 50.61% (100% SH-BPO) to 11.15% (100% SFW-BO), while increasing unsaturated fats. Cupcakes formulated with SFW-BO blends showed enhanced specific volume and reduced textural hardness, with the 100% replacement sample achieving the highest volume (1.86 cm³/g). Water activity and sensory analyses indicated no significant differences between shortening and oleogel-containing cupcakes, suggesting comparable microbial stability and consumer acceptability. These findings establish refining waste-derived sunflower wax oleogel as a functionally robust and nutritionally advantageous alternative to traditional shortening, enabling the production of baked goods with a reduced saturated fat footprint without compromising technological performance or sensory quality.

Author Biographies

Asmaa, Food Techn. Research Institute, Agricultural Research Center, Giza, Egypt.

researcher at Food Engineering and Packaging Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt

Hanaa , Food Technology Research Institute, Agricultural Research Center, Giza, Egypt

Researcher at Experimental Kitchen Research Unit, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt

Abdelgawad, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt

Researcher at Oils and Fats Technology Research Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt

 

References

Alvarez-Ramirez, J. (2016). Thermal and rheological pro-perties of sponge cake batters and texture and microstructural characteristics of sponge cake made with native corn starch in partial or total replacement of wheat flour. LWT–Food Science and Technology, 70, 46–54. https://doi.org/10.1016/j.lwt.2016.02.031

Alvarez-Ramirez, J., Vernon-Carter, E. J., Carrera-Tarela, Y., Garcia, A., & Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rhe-ology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. LWT–Food Science and Technology, 130, 109701. https://doi.org/10.1016/j.lwt.2020.109701

American Association of Cereal Chemists (AACC). (2002). Approved methods of the American Association of Cereal Chemists (11th ed.). Saint Paul, Minnesota, USA: American Association of Cereal Chemists.

American Heart Association Nutrition Committee. (2006). Lichtenstein, A. H., Appel, L. J., Brands, M., Car-nethon, M., Daniels, S., Franch, H. A., Franklin, B., Kris-Etherton, P., & Harris, W. S. (2006). Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation, 114(1), 82–96.https://doi.org/10.1161/CIRCULATIONAHA.106.176158

AOAC. (2019). Official methods of analysis of AOAC International (20th ed.). Gaithersburg, MD, USA: Association of Official Analytical Chemists.

Baştürk, A., Badem, Ş., & Ceylan, M. M. (2023). Pro-polis and carnauba wax-based safflower oil oleogels as fat substitutes in cakes: Production, oxidative stability, and characterization. European Journal of Lipid Science and Technology,125(9), 2200213. https://doi.org/10.1002/ejlt.202200213

Blake, A. I., & Marangoni, A. G. (2015). The effect of shear on the microstructure and oil binding capacity of wax crystal networks. Food Biophysics, 10(4), 403-415. https://doi.org/10.1007/s11483-015-9398-z

Carelli, A. A., Frizzera, L. M., Forbito, P. R., & Crapiste, G. H. (2002). Wax composition of sunflower seed oils. Journal of the American Oil Chemists’ Society, 79(8), 763–768.https://doi.org/10.1007/s11746-002-0558-8

Chalapud, M. C., Baümler, E. R., & Carelli, A. A. (2017). Characterization of waxes and residual oil recovered from sunflower oil winterization waste. European Journal of Lipid Science and Technology, 119(2), 1500608. https://doi.org/10.1002/ejlt.201500608

Co, E. D., & Marangoni, A. G. (2012). Organogels: An alternative edible oil-structuring method. Journal of the American Oil Chemists’ Society, 89, 749–780. https://doi.org/10.1007/s11746-011-1953-2

Codex Alimentarius Commission. (2009). Codex standard for named vegetable oils – CODEXSTAN 210-1999. Rome, Italy: Food and Agriculture Organization of the United Nations & World Health Organization.

Dassanayake, L. S. K., Kodali, D. R., Ueno, S., & Sato, K. (2011). Physical properties of organogels made of rice bran wax and vegetable oils. In Alejandro G. Marangoni & Nissim Garti (Eds.), Edible oleogels: Structure and health implications (pp. 149–172). American Oil Chemists’ Society Press. https://doi.org/10.1016/B978-0-9830791-1-8.50010-3

De Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T., Uleryk, E., Budylowski, P., Schünemann, H., Beyene, J., & Anand, S.S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all-cause mortality, cardio-vascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ, 351, h3978. https://doi.org/10.1136/bmj.h3978

Demirkesen, I., & Mert, B. (2019). Utilization of beeswax oleogel–shortening mixtures in gluten-free bakery products. Journal of the American Oil Chemists’ Society, 96(5), 545–554.https://doi.org/10.1002/aocs.12195

Dimakopoulou-Papazoglou, D., Zampouni, K., Katsani-dis, E., Prodromidis, P., & Moschakis, T. (2024). Microstructure, physical properties, and oxidative stability of olive oil oleogels composed of sun-flower wax and monoglycerides. Gels, 10, 195. https://doi.org/10.3390/gels10030195

Doan, C. D., Tavernier, I., Okuro, P. K., & Dewettinck, K. (2018). Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry. Innovative Food Science & Emerging Technologies, 45, 42–52. https://doi.org/10.1016/j.ifset.2017.09.018

Dubey, P., Sharma, P., & Kumar, V. (2017). FTIR and GC–MS spectral datasets of wax from Pinus roxburghii Sarg. needles biomass. Data Brief, 15, 615–622. https://doi.org/10.1016/j.dib.2017.09.074

Feng, Z., He, D., Zhang, L., Li, Q., Xue, C., Yi, X., Liao, L., Pei, Z., & Shen, X. (2025). Preparation of myofibrillar protein oleogels by emulsion template method: Application of fat substitute for sponge cakes. LWT–Food Science and Technology, 216, 117350. https://doi.org/10.1016/j.lwt.2025.117350

Gao, P., Liu, Y., Wang, S., Huang, C., Zhong, W., Yin, J., Hu, C., He, D., & Wang, X. (2024). Effects of different oleogelators on the structural properties and composition of iron walnut-oil oleogels. Ultrasonics Sonochemistry, 102, 106729. https://doi.org/10.1016/j.ultsonch.2023.106729

Ghotra, B. S., Dyal, S. D., & Narine, S. S. (2002). Lipid shortenings: A review. Food Research Interna-tional, 35, 1015–1048. https://doi.org/10.1016/S0963-9969(02)00163-3

Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. A., & Rush, J. W. E. (2009). Potential food applications of edible oil organogels. Trends in Food Science & Technology, 20(10), 470–480. https://doi.org/10.1016/j.tifs.2009.06.002

Hussien, H. A., Afify, H., & Shabib, Z. (2023). Production and quality evaluation of cupcakes enriched with prebiotics. Journal of Food Technology Research, 2(3), 55–67. https://doi.org/10.21608/ftrj.2023.212146.1024

Hwang, H. S., Kim, S., Singh, M., Winkler-Moser, J. K., & Liu, X. X. (2012). Organogel formation of soybean oil with waxes. Journal of the American Oil Chemists’ Society, 89, 639–647. https://doi.org/10.1007/s11746-011-1953-2

International Organization for Standardization. (2017). ISO 12966-2: Animal and vegetable fats and oils – Gas chromatography of fatty acid methyl esters – Part 2: Preparation of methyl esters of fatty acids. Geneva: ISO.

Khiabani, A. A., Tabibiazar, M., Roufegarinejad, L., Hamishehkar, H., & Alizadeh, A. (2020). Pre-paration and characterization of carnauba wax/adi-pic acid oleogel: A new reinforced oleogel for ap-plication in cake and beef burger. Food Chemistry, 333, 127446. https://doi.org/10.1016/j.foodchem.2020.127446

Knuutinen, U., & Norrman, A. (2000, October). Wax analysis in conservation objects by solubility studies, FTIR and DSC. Paper presented at the 15th World Conference on Nondestructive Testing, Rome, Italy. https://www.ndt.net/article/wcndt00/index.htm

Lim, J., Hwang, H., & Lee, S. (2017). Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties. Journal of Applied Biological Che-mistry, 60(1), 17–22. https://doi.org/10.1007/s13765-016-0241-y

Liu, Y., Guan, E., Li, M., Bian, K., Wen, J., & Ren, C. (2020). Improvement of cake quality by super-heated steam treatment of wheat. Journal of Cereal Science, 95, 103046. https://doi.org/10.1016/j.jcs.2020.103046

Lutsenko, M., Kharytonov, M., & Peron, G. (2024). Production of edible lecithin from sunflower-oil refining waste. International Journal of Environ-mental Studies, 81(1), 432–445. https://doi.org/10.1080/00207233.2024.2314845

Marangoni, A. G., & Garti, N. (Eds.) (2018). Edible oleogels: Structure and health implication (2nd ed.). Academic Press and AOCS Press.

Martínez-Velasco, A., Trujillo-Ramírez, D., Bustos-Vázquez, G., & Cervantes-Arista, C. (2024). The use of candelilla wax/canola oil oleogel in the formulation of sponge cake bread improves morphostructural and sensory properties. Discover Food, 4(1), 160. https://doi.org/10.21203/rs.3.rs-4613222/v1

Mondul, A. M., Moore, S. C., Weinstein, S. J., Karoly, E. D., Sampson, J. D., & Albanes, D. (2015). Metabolomic analysis of prostate cancer risk in a prospective cohort: The alpha-tocopherol, beta-carotene cancer prevention (ATBC) study. Inter-national Journal of Cancer, 137(9), 2124–2132. https://doi.org/10.1002/ijc.29576

Mozaffarian, D., Micha, R., & Wallace, S. (2010). Effects on coronary heart disease of increasing poly-unsaturated fat in place of saturated fat: A syste-matic review and meta-analysis of randomized con-trolled trials. PLoS Medicine, 7(3), e1000252. https://doi.org/10.1371/journal.pmed.1000252

Öğütcü, M., & Yılmaz, E. (2015). Characterization of hazelnut oil oleogels prepared with sunflower and carnauba waxes. International Journal of Food Properties, 18, 1741–1755. https://doi.org/10.1080/10942912.2014.933352

Onacik-Gür, S., & Zbikowska, A. (2019). Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. Journal of Food Science and Technology, 57, 1609–1618. https://doi.org/10.1007/s13197-019-04193-8

Ozdemir-Orhan, N., Eroglu, Z., & Omac, B. (2024). Changes in quality characteristics and inactivation of Salmonella in cake, including oleogel used as a fat replacer, baked with two different methods. Journal of Food Science, 89(12), 9595–9607.https://doi.org/10.1111/1750-3841.17540

Özer, E. D., & Özer, C. O. (2023). Optimization of olive oil oleogel-based emulsion composition: Effect of oleogel composition on emulsion characteristics. Journal of Oleo Science, 72(2), 131–138. https://doi.org/10.5650/jos.ess22282

Patel, A. R., Babaahmadi, M., Lesaffer, A., & Dewettinck, K. (2015). Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. Journal of Agricultural and Food Chemistry, 63, 4862–4869. https://doi.org/10.1021/acs.jafc.5b01548

Qiu, H., Zhang, H., & Eun, J. (2024). Oleogel classify-cation, physicochemical characterization methods, and typical cases of application in food: A review. Food Science and Biotechnology, 33, 1273–1293. https://doi.org/10.1007/s10068-023-01501-z

Rahman, M. S. (2009). Food properties handbook (2nd ed.). CRC Press. https://doi.org/10.1201/9781420003093

Ramadhan, W., Firdaos, A. N., Krisnawan, W. V., Su-seno, S. H., Riyanto, B., Trilaksani, W., & Santoso, J. (2024). Synthesis of a sustainable marine oleogel and its application as a fat substitute in a sponge cake system. Sustainable Food Technologies, 2(4), 1022–1032. https://doi.org/10.1039/d3fb00239j

Redondas, C. Z., Baümler, E. R., & Carelli, A. A. (2020). Sunflower wax recovered from oil tank settlings: Revaluation of a waste product from the oilseed industry. Journal of the Science of Food and Agriculture, 100, 201–211. https://doi.org/10.1002/jsfa.10017

Renzyaeva, T. V. (2013). On the role of fats in baked flour goods. Foods Raw Materials, 1(1), 19–25. https://doi.org/10.12737/1513

Rios, R. V., Pessanha, M. D. F., Almeida, P. F., Viana, C. L., & Lannes, S. C. d. S. (2014). Application of fats in some food products. Food Science and Technology, 34, 3–15. https://doi.org/10.1590/S0101-20612014000100001

Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2009). Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. Current Opinion in Colloid & Inter-face Science, 14(1), 33–42. https://doi.org/10.1016/j.cocis.2008.02.004

Roufegarinejad, L., Ahmadi, G., Icyer, N. C., Toker, O. S., & Khiabani, A. H. (2024). Fabrication of healthier monoglyceride-based oleogel containing linseed-sunflower oil and its application as shortening in cake formulation. International Journal of Food Science & Technology, 59(1), 299–308. https://doi.org/10.1111/ijfs.16809

Roufegarinejad, L., Dehghani, S., Bakhshi, S., Toker, O. S., Pirouzian, H. R., & Khiabani, A. H. (2024). Oleogelation of sunflower-linseed oils with car-nauba wax as an innovative strategy for shortening substitution in cakes. Food Chemistry, 437, 137745. https://doi.org/10.1016/j.foodchem.2023.137745

Ruiz-Núñez, B., Dijck-Brouwer, D. J., & Muskiet, F. A. (2016). The relation of saturated fatty acids with low-grade inflammation and cardiovascular di-sease. Journal of Nutritional Biochemistry, 36, 1–20. https://doi.org/10.1016/j.jnutbio.2015.12.007

Santos, M. A., Magalhães, A. E. R., Okuro, P. K., Steel, C. J., & Cunha, R. L. (2024). High internal phase emulsion-template oleogels stabilized by sodium caseinate: Quercetin complexes and potential application in pound cakes. Journal of Food Engineering, 366, 111860. https://doi.org/10.1016/j.jfoodeng.2023.111860

Schubert, M., Erlenbusch, N., Wittland, S., Nikolay, S., Hetzer, B., & Matthäus, B. (2022). Rapeseed oil-based oleogels for the improvement of the fatty acid profile using cookies as an example. European Journal of Lipid Science and Technology, 124(11), 2200033. https://doi.org/10.1002/ejlt.202200033

Senyilmaz-Tiebe, D., Pfaff, D. H., Virtue, S., Schwarz, K. V., Fleming, T., Altamura, S., Muckenthaler, M. U., Okun, J. G., Vidal-Puig, A., Nawroth, P., & Teleman, A. A. (2018). Dietary stearic acid regu-lates mitochondria in vivo in humans. Nature Communications, 9, 3129. https://doi.org/10.1038/s41467-018-05614-6

Snedecor, G. W., & Cochran, W. G. (1982). Statistical methods (6th ed.). Iowa State University Press, Iowa, U.S.A.

Stanciu, A. (2025). Application of FTIR spectroscopy in the analysis and quality assessment of sunflower oil. Journal of Research in Chemistry, 6(1), 113–117. https://doi.org/10.22271/reschem.2025.v6.i1b.178

Tang, Y. R., & Ghosh, S. (2021). Canola protein thermal denaturation improved emulsion-templated oleoge-lation and its cake-baking application. RSC Ad-vances, 11(41), 25141–25157. https://doi.org/10.1039/d1ra02250d

Vanrooijen, M. A., Plat, J., Zock, P. L., Blom, W. A. M., & Mensink, R. P. (2021). Effects of consecutive mixed meals high in palmitic acid or stearic acid on 8-h postprandial lipemia and glycemia in healthy-weight and overweight men and postmenopausal women: A randomized con-trolled trial. European Journal of Nutrition, 60(7), 3659–3667. https://doi.org/10.1007/s00394-021-02530-2

Wettlaufer, T., & Flöter, E. (2022). Wax based oleogels and their application in sponge cakes. Food & Function, 13(18), 9419–9433. https://doi.org/10.1039/D2FO00563H

(WHO)World Health Organization. (2003). Diet, nutrition and the prevention of chronic diseases: Report of a joint WHO/FAO expert consultation (WHO Tech-nical Report Series, No. 916). Geneva: WHO. https://iris.who.int/bitstream/handle/10665/42665/WHO_TRS_916.pdf

Yang, S., Yang, G., Chen, X., Chen, J., & Liu, W. (2020). Interaction of monopalmitate and carnauba wax on the properties and crystallization behavior of soybean oleogel. Grain & Oil Science and Technology, 3, 49–56. https://doi.org/10.1016/j.gaost.2020.05.001

Yi, Y., Yao, J., Xu, W., Wang, L., & Wang, H. (2019). Investigation on the quality diversity and quality FTIR characteristic relationship of sunflower seed oils. RSC Advances, 9, 27347–27360. https://doi.org/10.1039/c9ra04848k

Yılmaz, E., & Öğütcü, M. (2015). The texture, sensory properties and stability of cookies prepared with wax oleogels. Food & Function, 6(4), 1194–1204. https://doi.org/10.1039/C5FO00019J

Published
2026/02/05
Section
Original research paper