VEŠTAČKE NEURONSKE MREŽE ZA PREDVIĐANJE KVALITETA RAZLIČITIH GENOTIPOVA PARADAJZA
Sažetak
Senzorska analiza predstavlja najbolje sredstvo za precizno opisivanje kvaliteta svežih namirnica. Međutim, to je skupa i dugotrajna metoda koja se ne može koristiti za merenje pokazatelja kvaliteta u realnom vremenu. Cilj ovog rada bio je da doprinese proučavanju odnosa između podataka dobijenih primenom senzorske analize i instrumentalnih metoda i da definiše odgovarajući model za predviđanje senzorskih svojstava svežeg paradajza pomoću određivanja fizičko-hemijskih svojstava. Analiza glavnih komponenti (PCA) primenjena je na eksperimentalne podatke da bi se okarakterisali i diferencirali posmatrani genotipovi, objašnjavajući 73,52% od ukupne varijanse, koristeći prve tri glavne komponente. Model veštačke neuronske mreže (ANN) korišćen je za predviđanje senzorskih svojstava na osnovu rezultata dobijenih osnovnim hemijskim i instrumentalnim određivanjima. Razvijeni ANN model predviđa senzorska svojstva sa visokom adekvatnošću, sa ukupnim koeficijentom determinacije od 0,859.
Reference
AOAC International (2000). Official methods of analysis (17th ed.). Arlington, VA, USA: Association of Official Analytical Chemists.
Arias, R., Lee, T. C., Logendra, L., & Janes, H. (2000). Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. Journal of Agricultural and Food Chemistry, 48, 1697-1702.
Bahramparvar, M., Salehi, F., & Razavi, S. M. (2014). Predicting total acceptance of ice cream using artificial neural network. Journal of Food Processing and Preservation, 38 (3),1080-1088.
Baldwin, E. A., Scott, J. W., Shewmaker, C. K., & Schuch, W. (2000). Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. HortScience, 35, 1013-1021.
Basheer, L. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design and application. Journal of Microbiological Methods, 43(1), 3-31.
Batu, A. (2004). Determination of acceptable firmness and colour values of tomatoes. Journal of Food Engineering, 61(3), 471-475.
Cancilla, J. C., Wang, S. C., Díaz-Rodríguez, P., Matute, G., Cancilla, J. D., Flynn, D., & Torrecilla, J. S. (2014). Linking chemical parameters to sensory panel results through neural networks to distinguish olive oil quality. Journal of Agricultural and Food Chemistry, 62(44), 10661-10665.
Canene-Adams, K., Campbell, J. K., Zaripheh, S., Jeffery, E. H., & Erdman, J. W. (2005). The tomato as a functional food. Journal of Nutrition, 135, 1226-1230.
Carbonell, L., Izquierdo, L., Carbonell, I., & Costell, E. (2008). Segmentation of food consumers according to their correlations with sensory attributes projected on preference spaces. Food Quality and Preference, 19, 71-78.
Corollaro, M. L., Endrizzi, I., Bertolini, A., Aprea, E., Demattè, M. L., Costa, F., .Biasioli, F., & Gasperi, F. (2013). Sensory profiling of apple: Methodological aspects, cultivar characterisation and postharvest changes. Postharvest Biology and Technology, 77, 111-120.
Geeson, J. D., Browne, K. M., Maddison, K., Shepherd, J., & Guarald, F. (1985). Modified atmosphere packaging to extend the shelf life of tomatoes. Journal of Food Technology, 20, 339–349.
Hu, X. & Weng, Q. (2009). Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sensing of Environment, 113, 2089–2102.
ISO. (2012). Sensory analysis — General guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors. ISO 8586. Geneva, Switzerland: International Organization for Standardization.
ISO. (2014). Methodology – Guidelines for monitoring the performance of a quantitative sensory panel. ISO 11132. Geneva, Switzerland: International Organization for Standardization.
ISO. (2007). Sensory analysis – general guidance for the design of test rooms, AMENDMENT 1. ISO 8589. Geneva, Switzerland: International Organization for Standardization.
Kaiser, H. F. & Rice, J. (1974). Little Jiffy, Mark IV. Educational and Psychological Measurement, 34(1), 111-117.
Kyriacou, M. C., & Rouphael, Y. (2018). Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234, 463-469.
Lenucci, M. S., Cadinu, D., Taurino, M., Piro, G., & Dalessandro, G. (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. Journal of Agricultural and Food Chemistry, 54, 2606-2613.
Maul, F., Sargent, S. A., Sims, C. A., Baldwin, E. A., Balaban, M. O., & Huber, D. J. (2000). Tomato flavor and aroma quality as affected by storage temperature. Journal of Food Science, 65, 1228-1237.
Oraguzie, N., Alspach, P., Volz, R., Whitworth, C., Ranatunga, C., Weskett, R., & Harker, R. (2009). Postharvest assessment of fruit quality parameters in apple using both instruments and an expert panel. Postharvest Biology and Technology, 52, 279-287.
Otto, M. (1999). Chemometrics Statistics and Computer Application in Analytical Chemistry. Wiley-VCH: Weinheim, Germany.
Pezo, L. L., Ćurčić, B. Lj., Filipović, V. S., Nićetin, M. R., Koprivica, G. B., Mišljenović, N. M., & Lević, Lj. B. (2013). Artificial neural network model of pork meat cubes osmotic dehydratation. Hemijska industrija, 67, 465-475.
Pinela, J., Barros, L., Carvalho, A. M., & Ferreira, I. C. (2012). Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in North eastern Portugal homegardens. Food and Chemical Toxicology, 50, 829-834.
Pinheiro, J., Alegria, C., Abreu, M., Gonçalves, E. M., & Silva, C. L. (2013). Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv .‘Zinac’) during storage. Journal of Food Engineering, 114(3), 338-345.
Rouphael, Y., Kyriacou, M. C., Petropoulos, S. A., De Pascale, S., & Colla, G. (2018). Improving vegetable quality in controlled environments. Scientia Horticulturae, 234, 275-289.
Ruiz, J. J., Alonso, A., García-Martínez, S., Valero, M., Blasco, P., & Ruiz-Bevia, F. (2005). Quantitative analysis of flavour volatiles detects differences among closely related traditional cultivars of tomato. Journal of the Science of Food and Agriculture, 85, 54-60.
Sabio, E., Lozano, M., Montero de Espinosa, V., Mendes, R. L., Pereira, A. P., Palavra, A. F., & Coelho, J. A. (2003). Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Industrial & Engineering Chemistry Research, 42, 6641-6646.
Singh, R. R. B., Ruhil, A. P., Jain, D. K., Patel, A. A., & Patil, G. R. (2009). Prediction of sensory quality of UHT milk – a comparison of kinetic and neural network approaches. Journal of Food Engineering, 92(2), 146-151.
Slimestad, R. & Verheul, M. (2009). Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. Journal of the Science of Food and Agriculture, 89, 1255-1270.
Turan, D., Capanoglu, E., & Altay, F. (2015). Investigating the effect of roasting on functional properties of defatted hazelnut flour by response surface methodology (RSM). LWT-Food Science and Technology, 63, 758-765.
USDA. (1991). United States Standards for grades of fresh tomatoes. United States Department of Agriculture, Agricultural Marketing Service.
Zaborowicz, M., Boniecki, P., Koszela, K., Przybył, J., Mazur, R., Kujawa, S., & Pilarski, K. (2013). Use of artificial neural networks in the identification and classification of tomatoes. In Proceedings of the Fifth International Conference on Digital Image Processing (ICDIP 2013) (Vol. 8878, p. 88782R). Beijing, China.