POBOLJŠANI PROTOKOL ZA PRIRODNO KONVEKTIVNO SUŠENJE BUNDEVE

Ključne reči: slobodan protok vazduha, optimizacija energije, oblik uzorka, povrće, Pejdžov model, difuzivnost

Sažetak


Najefikasniji način očuvanja poljoprivrednog proizvoda je sušenje. Međutim, sušenje povrća je postupak koji troši energiju. U ovom radu,  razmatra  se konvektivno sušenje bundeve ca ciljem iznalaženja režima sušenja koji smanjuje vreme sušenja i minimizira potrošnju toplote. U radu se razmatra i uticaj konfiguracije uzorka na efikasnost sušenja i ispituju se uzorci bundeve u obliku kriške i kocke. Uzorci su pod-vrgnuti protoku vazduha sa slobodnom konvekcijom na različitim temperaturama (40 ° C, 46 ° C, 52 ° C i 60 ° C) za svaku seriju. Takođe je uzet u obzir i režim sušenja sa promen-ljivom temperaturom vazdušne struje. Krive sušenja su fitovane korišćenjem široko upotrebljavanih modela kod modelovanja tankoslojnog sušenja. Eksperimentalni podaci su se najbolje uklapali u izmenjeni Pejdžov model. Efektivni koeficijent difuzivnosti određen je za svaku seriju preko nagiba krive promene sadržaja vlage. Pokazalo se da je difuzivnost velika, a vreme sušenja kratko za ispitivane visoke temperature sušenja. Procesi sušenja za uzorke bundeve u obliku kocke bili su efikasniji u odnosu na one u obliku kriške. Pri primeni režima sušenja sa promenljivom temperaturom vazdušne struje na uzorke bundeve u obliku kocke, analiza podataka pokazala je da je efektivna difuznost bila veća u trećoj fazi u poređenju sa svim ostalim ispitivanim temperaturama sušenja, dok je ukupno vreme sušenja bilo je slično onom dobijenom u režimu sušenja na visokoj temperaturi. Ovim postupkom ukupno potrošena energija bila je mnogo manja, a vreme sušenja kraće.

Biografije autora

Hakim Semai, Renewable Energy Development Centre (CDER), Bouzaréah Algiers, Algeria

Senior researcher

Solar Thermal and Geothermal Energy

Division Renewable Energy Development Centre (CDER), Bouzaréah   Algiers, Algeria

Aissa Amari, Renewable Energy Development Centre (CDER), Bouzaréah Algiers, Algeria

Engineer senior

Solar Thermal and Geothermal Energy Division

Renewable Energy Development Centre (CDER)

Reference

Arévalo-Pinedo A., & Murr F.E.X. (2007). Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin. Journal of Food Engineering, 80,152-156. https://doi.org/10.1016/j.jfoodeng.2006.05.005

Bantle M., Käfer T., & Eikevik T.M. (2013). Model and process simulation of microwave assisted convective drying of clipfish. Applied Thermal Engineering, 59, 675-682. https://doi.org/10.1016/j.applthermaleng.2013.05.046

Bouhdjar A., Semai H., Boukadoum A., El Mokretar S., Mazari A., Semiani M., & Amari A. (2020). Improved procedure for natural convection garlic drying. Acta Technologica Agriculturae, 2, 92-98. https://doi.org/10.2478/ata-2020-0015

Crank J. (1979). The mathematics of diffusion. Great Britain: Oxford Press.

Crapiste G.H., Whitaker S., & Rotstein E. (1988). Drying of cellular material – I. A mass transfer theory. Chemical Engineering Science, 43, 2919-2928.

Doymaz I. (2007). The kinetics of forced convective air-drying of pumpkin slices. Journal of Food Engineering, 79, 243-248. https://doi.org/10.1016/j.jfoodeng.2006.01.049

Esturk, O., & Soysal, Y. (2010). Drying properties and quality parameters of dill dried with intermittent and continuous microwave-convective air treatments. Journal of Agricultural Science, 16, 26-36.

Incropera F.P., & De Witt D.P. (1996). Introduction to heat transfer (3rd ed). New York: Wiley.

Kocabiyik H. (2010). Combined infrared radiation and hot air drying. In Z. Pan & G.G. Atungulu (Eds.), Infrared Heating for Food and Agricultural Processing (pp. 101-116). CRC Press Taylor & Francis Group.

Luikov A.V. (1968). Analytical heat diffusion theory. New York, London,Toronto, Sidney, San Francisco: Academic Press.

Madamb P.S., Driscoll R.H., & Buckle K.A. (1996). The thin layer drying characteristics of garlic slices. Journal of Food Engineering, 29, 75-97.

Nawirska A., Figiel A., Kucharska A.Z., Sokol-Letowska A., & Biesiada A. (2009). Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering, 94, 14-20.

https://doi.org/10.1016/j.jfoodeng.2009.02.025

Ortiz-Garcia-Carrasco B., Yanez-Mota E., Pachecoaguirre F.M., Ruiz-Espinosa H., Garcia-Alvarado M.A., Cortes-Zavaleta O., & Ruiz-Lopéz I.I. (2015). Drying of shrinkable food products: Appraisal of deformation behavior and moisture diffusivity estimation under isotropic shrinkage. Journal of Food Engineering, 144, 138-147.

https://doi.org/10.1016/j.jfoodeng.2014.07.022

Perez N.E., & Schmalko M.E. (2009). Convective drying of pumpkin: influence of pre-treatment and drying temperature. Journal of Food Process Engineering, 32, 88–103. https://doi.org/10.1111/j.1745-4530.2007.00200.x

Roongruangsri W., & Bronlund J.E. (2015). A review of drying processes in the production of pumpkin powder. International Journal of Food Engineering, 11, 789-799. https://doi.org/10.1515/ijfe-2015-0168

Ruhanian S., & Movagharnejad K. (2016). Mathematical modeling and experimental analysis of potato thin-layer drying in an infrared-convective dryer. Engineering in Agriculture, Environment and Food, 9, 84-91.

https://doi.org/10.1016/j.eaef.2015.09.004

Seremet L., Botez E., Nistor O.V., Andronoiu D.G., & Mocanu G.D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195, 104-109.

https://doi.org/10.1016/j.foodchem.2015.03.125

Süfer, Ö., Sezer, S., & Demir, H. (2017). Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices. Journal of Food Processing and Preservation, 41. https://doi.org/10.1111/jfpp.13239

Tunde-Akintunde T.Y., & Ogunlakin, G.O. (2013). Mathematical modeling of drying of pretreated and untreated pumpkin. Journal Food Science and Technology, 50, 705-713. https://doi.org/10.1007/s13197-011-0392-2

Objavljeno
2021/06/10
Broj časopisa
Rubrika
Originalni naučni rad