POBOLJŠANI PROTOKOL ZA PRIRODNO KONVEKTIVNO SUŠENJE BUNDEVE
Sažetak
Najefikasniji način očuvanja poljoprivrednog proizvoda je sušenje. Međutim, sušenje povrća je postupak koji troši energiju. U ovom radu, razmatra se konvektivno sušenje bundeve ca ciljem iznalaženja režima sušenja koji smanjuje vreme sušenja i minimizira potrošnju toplote. U radu se razmatra i uticaj konfiguracije uzorka na efikasnost sušenja i ispituju se uzorci bundeve u obliku kriške i kocke. Uzorci su pod-vrgnuti protoku vazduha sa slobodnom konvekcijom na različitim temperaturama (40 ° C, 46 ° C, 52 ° C i 60 ° C) za svaku seriju. Takođe je uzet u obzir i režim sušenja sa promen-ljivom temperaturom vazdušne struje. Krive sušenja su fitovane korišćenjem široko upotrebljavanih modela kod modelovanja tankoslojnog sušenja. Eksperimentalni podaci su se najbolje uklapali u izmenjeni Pejdžov model. Efektivni koeficijent difuzivnosti određen je za svaku seriju preko nagiba krive promene sadržaja vlage. Pokazalo se da je difuzivnost velika, a vreme sušenja kratko za ispitivane visoke temperature sušenja. Procesi sušenja za uzorke bundeve u obliku kocke bili su efikasniji u odnosu na one u obliku kriške. Pri primeni režima sušenja sa promenljivom temperaturom vazdušne struje na uzorke bundeve u obliku kocke, analiza podataka pokazala je da je efektivna difuznost bila veća u trećoj fazi u poređenju sa svim ostalim ispitivanim temperaturama sušenja, dok je ukupno vreme sušenja bilo je slično onom dobijenom u režimu sušenja na visokoj temperaturi. Ovim postupkom ukupno potrošena energija bila je mnogo manja, a vreme sušenja kraće.
Reference
Arévalo-Pinedo A., & Murr F.E.X. (2007). Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin. Journal of Food Engineering, 80,152-156. https://doi.org/10.1016/j.jfoodeng.2006.05.005
Bantle M., Käfer T., & Eikevik T.M. (2013). Model and process simulation of microwave assisted convective drying of clipfish. Applied Thermal Engineering, 59, 675-682. https://doi.org/10.1016/j.applthermaleng.2013.05.046
Bouhdjar A., Semai H., Boukadoum A., El Mokretar S., Mazari A., Semiani M., & Amari A. (2020). Improved procedure for natural convection garlic drying. Acta Technologica Agriculturae, 2, 92-98. https://doi.org/10.2478/ata-2020-0015
Crank J. (1979). The mathematics of diffusion. Great Britain: Oxford Press.
Crapiste G.H., Whitaker S., & Rotstein E. (1988). Drying of cellular material – I. A mass transfer theory. Chemical Engineering Science, 43, 2919-2928.
Doymaz I. (2007). The kinetics of forced convective air-drying of pumpkin slices. Journal of Food Engineering, 79, 243-248. https://doi.org/10.1016/j.jfoodeng.2006.01.049
Esturk, O., & Soysal, Y. (2010). Drying properties and quality parameters of dill dried with intermittent and continuous microwave-convective air treatments. Journal of Agricultural Science, 16, 26-36.
Incropera F.P., & De Witt D.P. (1996). Introduction to heat transfer (3rd ed). New York: Wiley.
Kocabiyik H. (2010). Combined infrared radiation and hot air drying. In Z. Pan & G.G. Atungulu (Eds.), Infrared Heating for Food and Agricultural Processing (pp. 101-116). CRC Press Taylor & Francis Group.
Luikov A.V. (1968). Analytical heat diffusion theory. New York, London,Toronto, Sidney, San Francisco: Academic Press.
Madamb P.S., Driscoll R.H., & Buckle K.A. (1996). The thin layer drying characteristics of garlic slices. Journal of Food Engineering, 29, 75-97.
Nawirska A., Figiel A., Kucharska A.Z., Sokol-Letowska A., & Biesiada A. (2009). Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering, 94, 14-20.
https://doi.org/10.1016/j.jfoodeng.2009.02.025
Ortiz-Garcia-Carrasco B., Yanez-Mota E., Pachecoaguirre F.M., Ruiz-Espinosa H., Garcia-Alvarado M.A., Cortes-Zavaleta O., & Ruiz-Lopéz I.I. (2015). Drying of shrinkable food products: Appraisal of deformation behavior and moisture diffusivity estimation under isotropic shrinkage. Journal of Food Engineering, 144, 138-147.
https://doi.org/10.1016/j.jfoodeng.2014.07.022
Perez N.E., & Schmalko M.E. (2009). Convective drying of pumpkin: influence of pre-treatment and drying temperature. Journal of Food Process Engineering, 32, 88–103. https://doi.org/10.1111/j.1745-4530.2007.00200.x
Roongruangsri W., & Bronlund J.E. (2015). A review of drying processes in the production of pumpkin powder. International Journal of Food Engineering, 11, 789-799. https://doi.org/10.1515/ijfe-2015-0168
Ruhanian S., & Movagharnejad K. (2016). Mathematical modeling and experimental analysis of potato thin-layer drying in an infrared-convective dryer. Engineering in Agriculture, Environment and Food, 9, 84-91.
https://doi.org/10.1016/j.eaef.2015.09.004
Seremet L., Botez E., Nistor O.V., Andronoiu D.G., & Mocanu G.D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195, 104-109.
https://doi.org/10.1016/j.foodchem.2015.03.125
Süfer, Ö., Sezer, S., & Demir, H. (2017). Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices. Journal of Food Processing and Preservation, 41. https://doi.org/10.1111/jfpp.13239
Tunde-Akintunde T.Y., & Ogunlakin, G.O. (2013). Mathematical modeling of drying of pretreated and untreated pumpkin. Journal Food Science and Technology, 50, 705-713. https://doi.org/10.1007/s13197-011-0392-2