RAZLIČITOST AMINOKISELINSKOG SASTAVA U ŽITARICAMA

Aminokiseline u žitaricama

  • Zorica Tomičić University of Novi Sad, Institute of Food Technology
  • Недељка Спасевски Универзитет у Новом Саду, Научни институт за прехрамбене технологије у Новом Саду
  • Јасмина Лазаревић Универзитет у Новом Саду, Научни институт за прехрамбене технологије у Новом Саду
  • Ивана Чабаркапа Универзитет у Новом Саду, Научни институт за прехрамбене технологије у Новом Саду
  • Ружица Томичић Универзитет у Новом Саду, Технолошки факултет
Ključne reči: esencijalne aminokiseline, neesecijalne aminokiseline, hemijski sastav, nutritivni profil, referentni unos u ishrani

Sažetak


Kvalitet proteina zasniva se na njihovom sastavu aminokiselina, posebno na sadržaju i dostupnosti esencijalnih aminokiselina. Žitarice su važni izvori proteina za ishranu ljudi, ali su limitirajuće u količinama esencijalnih aminokiselina, posebno lizina. Cilj ove studije bila je analiza hemijskog sastava i profila aminokiselina različitih žitarica koje su važne za ishranu ljudi. Sadržaj proteina, vlage i sirovih masti značajno je varirao od 7.83 do 13.22%, 11.45 do 13.80%, odnosno od 1.57 do 6.35%. Dobijeni rezultati su pokazali da ovas ima najveći sadržaj sirovih proteina (13.22%), sirove masti (6.35%) i sirove celuloze (9.42 %) u poređenju sa drugim žitaricama. Značajne (p < 0.05) varijacije postojale su u sadržaju esencijalnih i neesencijalnih aminokiselina među uzorcima sa najvećim nivoom u ovsu i pšenici. Što se tiče udela esencijalnih aminokiselina u ukupnim aminokiselinama, moglo bi se zaključiti da je on iznosio jednu trećinu u testiranim žitaricama. Utvrđeno je da je glutaminska kiselina najzastupljenija aminokiselina. Moglo bi se zaključiti da je aminokiselinski sastav ovsa najpovoljniji među žitaricama zbog visokog sadržaja proteina i lizina koji se u ograničenim količinama nalazi u većini žitarica.

Reference

REFERENCES

Association of Analytical Communities (A.O.A.C.) (1998). Official Methods of Analysis (16th ed.). Gaithersburg, MD, USA.

Bandegan, A., Golian, A., Kiarie, E., Payne, R. L., Crow, G. H., Guenter, W., & Nyachoti, C. M. (2011). Standardized ileal amino acid digestibility in wheat, barley, pea and flaxseed for broiler chickens. Canadian Journal of Animal Science, 91(1), 103-111. https://doi.org/10.4141/CJAS10076

Blachier, F., Blais, A., Elango, R., Saito, K., Shimomura, Y., Kadowaki, M., & Matsumoto, H. (2021). Tolerable amounts of amino acids for human supplementation: summary and lessons from published peer-reviewed studies. Amino Acids, 531313-1328. https://doi.org/10.1007/s00726-021-03054-z

Boye, J., Wijesinha-Bettoni, R., & Burlingame, B. (2012). Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. British Journal of Nutrition, 108(2), 183-211. https://doi.org/10.1017/S0007114512002309

Caire-Juvera, G., Vázquez-Ortiz, F. A., & Grijalva-Haro, M. I. (2013). Amino acid composition, score and in vitro protein digestibility of foods commonly consumed in Northwest Mexico. Nutrición Hospitalaria, 28(2), 365-371. https://doi.org/10.3305/nh.2013.28.2.6219

Cervantes-Pahm, S. K, Liu, Y., & Stein H. H. (2014). Digestible indispensable amino acid score and digestible amino acids in eight cereal grains. British Journal of Nutrition, 111(9), 1663-1672. https://doi.org/10.1017/S0007114513004273

FAO. (2021). Crop Prospects and Food Situation – Quarterly Global Report No. 1. Rome: FAO (2021).

Ferreira, R. R., Varisi, V. A., Meinhardt, L. W., Lea, P. J., & Azevedo R. A. (2005). Are high-lysine cereal crops still a challenge? Brazilian Journal of Medical and Biological Research, 38(7), 985-994. https://doi.org/10.1590/s0100-879x2005000700002

Gheller, M., Bender, E., & Thalacker-Mercer, A. (2019). Safety of graded doses of histidine in healthy adults (P08-062-19). Current Developments in Nutrition3(1), nzz044.P08-062-19. https://doi.org/10.1093/cdn/nzz044.P08-062-19

Helm, R. M., & Burks, A. W. (1996). Hypoallergenicity of rice protein. Cereal Foods World, 41, 839-843.

Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods. 6(7), 53. https://doi.org/10.3390/foods6070053

Institute of Medicine. (2006). Dietary reference intakes: The essential guide to nutrient requirements. Washington, DC: The National Academies Press. https://doi.org/10.17226/11537

Jackman, S. R., Witard, O. C., Philp, A., Wallis, G. A., Baar, K., & Tipton, K. D. (2017). Branched-chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Frontiers in Physiology8, 390. https://doi.org/10.3389/fphys.2017.00390. eCollection 2017

Jiang, X. L., Tia, J. C., Hao, Z., & Zhang, W. D. (2008). Protein content and amino acid composition in grains of wheat-related species. Agricultural Sciences in China, 7(3), 272-279. http://dx.doi.org/10.1016%2FS1671-2927(08)60066-8

Joint WHO/FAO/UNU Expert Consultation (2007). Protein and amino acid requirements in human nutrition. World Health Organization Technical Report Series, 935, 1-265.

Knežević, D., Đukić, N., Madić, M., Paunović, A., & Zečević V. (2007). Comparison of amino acids contents in barley and wheat. Research Journal of Agricultural Science, 39(1), 71-76.

Kowieska, A., Lubowicki, R., & Jaskowska, I. (2011). Chemical composition and nutritional characteristics of several cereal grains. Acta Scientiarum Polonorum Zootechnica, 10(2), 37-50.

Kosieradzka, I., & Fabijańska, M. (2001). Comparison of the nutritive value of naked and husked oat protein with wheat and maize. Journal of Animal and Feed Sciences, 10(2), 309-314. https://doi.org/10.22358/jafs/70114/2001

Lafiandra, D., Riccardi, G., & Shewry, P. R. (2014). Improving cereal grain carbohydrates for diet and health. Journal of Cereal Science59(3), 312-326. https://doi.org/10.1016/j.jcs.2014.01.001

Laze, A., Arapi, V., Ceca, E., Gusho, K., Pezo, L., Brahushi, F., & Knežević, D. (2019). Chemical composition and amino acid content in different genotypes of wheat flour. Periodica Polytechnica Chemical Engineering, 63(4), 1-11. https://doi.org/10.3311/PPch.13185

Lea, D. T., Chua, H. D., & Lea, N. Q. (2016). Improving nutritional quality of plant proteins through genetic engineering. Current Genomics17(3), 220-229. https://doi.org/10.2174/1389202917666160202215934

Likittrakulwong, W., Poolprasert, P., & Srikaeo, K. (2021). Effects of extraction methods on protein properties obtained from paddy rice and germinated paddy rice. PeerJ9, e11365. https://doi.org/10.7717/peerj.11365

Moro, J., Tomé, D., Schmidely, P., Demersay, T. C., & Azzout-Marniche, D. (2020). Histidine: a systematic review on metabolism and physiological effects in human and different animal species. Nutrients12(5), 1414. https://doi.org/10.3390/nu12051414

Qamar, M. I. (2002). Development of minerals enriched brown flour by utilizing wheat milling by-products (MSc Thesis). University of Agriculture, Faisalabad, Pakistan.

Ramadas, S., Kumar, T. M. K., & Singh, G. P. (2019). Wheat production in India: trends and prospects. In F. Shah, Z. Khan, A. Iqbal, M. Turan & M. Olgun (Eds.), Recent advances in grain crops research (pp.1–16). London: Intech Open Limited, London, UK. https://doi.org/10.5772/intechopen.86341

Siddiqi, R. A., Singh, T. P., Rani, M., Sogi, D. S., & Bhat, M. A. (2020). Diversity in grain, flour, amino acid composition, protein profiling, and proportion of total flour proteins of different wheat cultivars of North India. Frontiers in Nutrition, 7, 141. https://doi.org/10.3389/fnut.2020.00141

Shewry, P. R. (2007). Improving the protein content and composition of cereal grain. Journal of Cereal Science, 46, 239-250. https://doi.org/10.1016/j.jcs.2007.06.006

Spackman, D. H., Stein, W. H., & Moose, S. (1958). Automatic recording apparatus for use in the chromatography of amino acids. Analytical Chemistry, 30, 1190-1206.

Sterna, V., Zute, S., & Brunava, L. (2016). Oat grain composition and its nutrition benefice. Agriculture and Agricultural Science Procedia, 8, 252-256. https://doi.org/10.1016/j.aaspro.2016.02.100

Tomičić, Z., Spasevski, N., Popović, S., Banjac, V., Đu-ragić, O., & Tomičić R. (2020). By-products of the oil industry as sources of amino acids in feed. Food and Feed Research, 47(2), 131-137. https://doi.org/10.5937/ffr47-28435

Ufaz, S., & Galili, G. (2008). Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiology147(3), 954-961. https://doi.org/10.1104/pp.108.118091

Wilson, D. C., Rafii, M., Ball, R. O., & Pencharz, P. B. (2000). Threonine requirement of young men determined by indicator amino acid oxidation with use of L-[1-(13)C]phenylalanine. The American Journal of Clinical Nutrition, 71(3), 757-764. https://doi.org/10.1093/ajcn/71.3.757

Zafar, S., Naz, N., Nazir, S., Abbas, M., & Khan, A. M. (2014). Analysis of selected amino acids in different varieties of wheat available in Punjab, Pakistan. Chromatography Research International, 2014, 1-6. https://doi.org/10.1155/2014/867070

Objavljeno
2022/04/07
Broj časopisa
Rubrika
Originalni naučni rad