ENZIMSKA SINTEZA FRUKTO-OLIGOSAHARIDA UPOTREBOM PECTINEX® ULTRA SP-L: ISPITIVANJE UTICAJA EKSPERIMENTALNIH USLOVA
Sažetak
Razvijanje svesti o brojnim prednostima upotrebe prebiotika kao funkcionalnih sastojaka prehrambenih proizvoda i hrane za životinje rezultira povećanjem potražnje, a samim tim i potrebom za povećanjem proizvodnje prebiotika na industrijskom novou. Ovo dodatno zahteva i razvijanje efikasnijih i ekonomičnijih procesa proizvodnje prebiotika. Cilj ovog rada bila je sinteza potvrđenih prebiotika - frukto-oligosaharida (FOS), transformacijom saharoze. Ova reakcija je odabrana prvenstveno sa aspekta mogućnosti sinteze oligosaharida manjih molarnih masa sa izraženijim prebiotskim efektom koji se ovim putem dobijaju. Kao izvor enzima korišćena je komercijalna enzimska smeša Pectinex® Ultra SP-L, čijom se upotrebom zbog niske cene na tržištu, dodatno utiče na ekonomičnost procesa. Ispitivanjem uticaja reakcionih uslova poput pH, temperature, koncentracije enzima i supstrata utvrđeno je da se variranjem uslova, kao i dužine trajanja procesa može značajno prilagoditi sastav dobijene smeše FOS. Stoga, utvrđeno je da se izvođenjem reakcije u vodenoj sredini (pH 7), na temperaturi od 50 °C upotrebom konentracije enzima od 1% (v/v) i koncentracije saharoze od 500 g/L može ostvariti maksimalni prinos FOS od 60% u ukupnim šećerima. Ovako dobijen sirup sa visokim udelom FOS se može koristiti kao aditiv proizvodima, dok se sa druge strane razvijeni proces može iskoristiti za direktnu transformaciju prehrambenih proizvoda (poput sokova, džema, nadeva, bombona, kolača i dr.) u kojima dominira saharoza kao osnovni izvor šećera, stvarajući na taj način proizvode sa manjom kalorijskom, a većom funkcionalnom vrednošću.
Reference
Ashwini, A., Ramya, H. N., Ramkumar, C., Reddy, K. R., Kulkarni, R. V., Abinaya, V., Naveen, S., & Raghu, A. V. (2019). Reactive mechanism and the applications of bioactive prebiotics for human health: Review. Journal of Microbiological Methods, 159, 128–137. https://doi.org/10.1016/j.mimet.2019.02.019
Battestin, V., & Macedo, G. A. (2007). Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electronic Journal of Biotechnology, 10(2), 191–199. https://doi.org/10.2225/vol10-issue2-fulltext-9
Bisswanger, H. (2014). Enzyme assays. Perspectives in Science, 1(1–6), 41–55. https://doi.org/10.1016/j.pisc.2014.02.005
Campos-Perez, W., & Martinez-Lopez, E. (2021). Effects of short chain fatty acids on metabolic and inflammatory processes in human health. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1866(5), 158900. https://doi.org/10.1016/j.bbalip.2021.158900
Contesini, F. J., de Lima, E.A., Mandelli, F., Borin, G. P., Alves, R. F., & Terrasan, C. R. F. (2018). Carbohydrate active enzymes applied in the production of functional oligosaccharides. In L. Melton, F. Shahidi, P. Varelis (Eds.), Encyclopedia of Food Chemistry (pp. 30–34). Oxford, UK: Academic Press. https://doi.org/10.1016/B978-0-08-100596-5.21639-9
Creative Enzymes. (2021). Effect of Enzyme Concentration on Enzymatic Reaction. https://www.creative-enzymes.com/resource/effect-of-enzyme-concentration-on-enzymatic-reaction_48.html
Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 1–27. https://doi.org/10.3390/foods8030092
Dominguez, A.L., Rodrigues, L.R., Lima, N.M. & Teixeira J.A. (2014). An overview of the recent developments on fructooligosaccharide production and applications. Food and Bioprocess Technology 7(2), 324–337. https://doi.org/10.1007/s11947-013-1221-6
Flores-Maltos, D. A., Mussatto, S. I., Contreras-Esquivel, J. C., Rodríguez-Herrera, R., Teixeira, J. A., & Aguilar, C. N. (2016). Biotechnological production and application of fructooligosaccharides. Critical Reviews in Biotechnology, 36(2), 259–267. https://doi.org/10.3109/07388551.2014.953443
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
Hang, Y. D., & Woodams, E. E. (1996). Optimization of enzymatic production of fructo-oligosaccharides from sucrose. LWT - Food Science and Technology, 29(5–6), 578–580. https://doi.org/10.1006/fstl.1996.0089
Hernandez, E., & Pandiella, S. (2013). Development of probiotics and prebiotics. In J. Teixeira & A. Vicente (Eds.), Engineering Aspects of Food Biotechnology (pp. 21–60). Taylor and Francis Group, LLC.
Kashyap, R., Palai, T., & Bhattacharya, P. K. (2015). Kinetics and model development for enzymatic synthesis of fructo-oligosaccharides using fructosyltransferase. Bioprocess and Biosystems Engineering, 38(12), 2417–2426. https://doi.org/10.1007/s00449-015-1478-4
Kaur, N., & Gupta, A.K. (2002). Applications of inulin and oligofructose in health and nutrition. Journal of Bioscience, 27(7), 703–714. https://doi.org/10.1007/BF02708379
Kumar, P., & Dubey, K. K. (2019). Current perspectives and future strategies for fructooligosaccharides production through membrane bioreactor. In P. Shukla (Ed.), Applied Microbiology and Bioengineering (pp. 185–202). Oxford, UK: Academic Press.
Maiorano, A. E., Piccoli, R. M., Da Silva, E. S., & De Andrade Rodrigues, M. F. (2008). Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnology Letters, 30(11), 1867–1877. https://doi.org/10.1007/s10529-008-9793-3
Martins, G. N., Ureta, M. M., Tymczyszyn, E. E., Castilho, P. C., & Gomez-Zavaglia, A. (2019). Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Frontiers in Nutrition, 6, 78. https://doi.org/10.3389/fnut.2019.00078
Nemukula, A., Mutanda, T., Wilhelmi, B. S., & Whiteley, C. G. (2009). Response surface methodology: Synthesis of short chain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus. Bioresource Technology, 100(6), 2040–2045. https://doi.org/10.1016/j.biortech.2008.10.022
Rodrigues, I. Carvalho, M.G. & Rocha, J.M. (2014). Increasing the protein content of rapeseed meal by enzymatic hydrolysis of carbohydrates. Bioresources, 9(2), 2010-2015. https://doi.org/10.15376/biores.9.2.2010-2025.
Romano, N., Santos, M., Mobili, P., Vega, R., & Gómez-Zavaglia, A. (2016). Effect of sucrose concentration on the composition of enzymatically synthesized short-chain fructo-oligosaccharides as determined by FTIR and multivariate analysis. Food Chemistry, 202, 467–475. https://doi.org/10.1016/j.foodchem.2016.02.002
Sánchez-Martínez, M. J., Soto-Jover, S., Antolinos, V., Martínez-Hernández, G. B., & López-Gómez, A. (2020). Manufacturing of short-chain fructooligosaccharides: from laboratory to industrial scale. Food Engineering Reviews, 12(2), 149–172. https://doi.org/10.1007/s12393-020-09209-0
Shang, Y., Kumar, S., Thippareddi, H., & Kim, W.K. (2018). Effect of dietary fructooligosaccharide (fos) supplementation on ileal microbiota in broiler chickens. Poultry Science, 97(10), 3622-3634. https://doi.org/10.3382/ps/pey131.
Singh, S. P., Jadaun, J. S., Narnoliya, L. K., & Pandey, A. (2017). Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Applied Biochemistry and Biotechnology, 183(2), 613–635. https://doi.org/10.1007/s12010-017-2605-2
Smaali, I., Jazzar, S., Soussi, A., Muzard, M., Aubry, N., & Nejib Marzouki, M. (2012). Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-dfructofuranosidase from Aspergillus awamori NBRC 4033. Biotechnology and Bioprocess Engineering, 17(2), 385–392. https://doi.org/10.1007/s12257-011-0388-9
Sridevi, V., Sumathi, V., Guro Prasad, M., & Murari, S. K. (2014). Fructooligosaccharides - type prebiotic : A Review. Journal of Pharmacy Research, 8(3), 321–330.
Tungland, B. C. (2003). Fructooligosaccharides and other fructans: structures and occurrence, production, regulatory aspects, food applications, and nutritional health significance. In G. Eggleston & G. Côté (Eds.), Oligosaccharides in Food and Agriculture (pp. 135–152). American Chemical Society.
Vega, R., & Zúniga-Hansen, M. E. (2011). Enzymatic synthesis of fructooligosaccharides with high 1-kestose concentrations using response surface methodology. Bioresource Technology, 102(22), 10180–10186. https://doi.org/10.1016/j.biortech.2011.09.025