ETARSKA ULJA KAO ANTIMIKROBNA I ANTIADHEZIVNA SREDSTVA PROTIV BAKTERIJA SALMONELLA TYPHIMURIUM I STAPHYLOCOCCUS AUREUS, I KVASACA CANDIDA ALBICANS I SACCHAROMYCES CEREVISIAE

  • Zorica Tomičić University of Novi Sad, Institute of Food Technology
  • Ružica Tomičić University of Novi Sad, Faculty of Technology, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia
  • Sunčica Kocić-Tanackov University of Novi Sad, Faculty of Technology, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia
  • Peter Raspor University of Ljubljana, Biotechnical Faculty, 1000 Ljubljana, Jamnikarjeva 101, Slovenia
Ključne reči: etarska ulja, antimikrobna sredstva, antiadhezivna sredstva, bakterje, kvasci

Sažetak


Rastući globalni problem usled povećane rezistencije mikroorganizama na najčešće korišćena antimikrobna sredstva, podstakao je istraživanja u cilju identifikacije novih, efikasnijih lekova širokog spektra delovanja. Poznato je da etarska ulja biljaka, zbog velikog biološkog i strukturnog diverziteta svojih komponenti, imaju mnoge potencijalne prednosti. Cilj ovog istraživanja bio je da se proceni antimikrobni i antiadhezivni efekat petnaest etarskih ulja i njihovih komponenti protiv dve bakterijske vrste i dve vrste kvasaca uzročnike kvarenja hrane i zaraznih bolesti. Antimikrobna aktivnost je određena ispitivanjem minimalne inhibitorne koncentracije (MIC), minimalne baktericidne koncentracije (MBC) i minimalne fungicidne koncentracije (MFC) etarskih ulja i komponenti. Rezultati su pokazali da su etarska ulja Cinnamomum zeylanicum i Eugenia caryophyllus imala najveću antimikrobnu aktivnost sa vrednostima MIC u rasponu od 0.078 do 1.25 mg/mL, odnosno 0.039 do 1.25 mg/mL. S druge strane, etarska ulja Eucalypti aetheroleum i Salvia officinalis su pokazala znatno slabija antimikrobna svojstva od ostalih. U daljem istraživanju, koncentracije MIC su korišćene za procenu inhibicije adhezije bakterija Salmonella Typhimurium ATCC 25923 i Staphylococcus aureus ATCC 14208, i kvasaca Candida albicans ATCC 10231 i Saccharomyces cerevisiae ATCC 9763 korišćenjem metode bojenja kristal violetom u mikrotitar pločama.  Na osnovu procenta inhibicije adhezije, kvasac S. cerevisiae ATCC 9763 je pokazao visok stepen antimikrobne rezistencije. Pored toga, E. caryophyllus je imalo najjači efekat sa inhibicijom adhezije do 73 %. U skladu sa rezultatima antimikrobne osetljivosti, najaktivnija antiadhezivna jedinjenja bila su karvakrol i timol. S obzirom na ulogu biofilma u kvarenju hrane i infektivnim bolestima, inhibicija početne faze formiranja biofilma prirodnim antimikrobnim agensima može biti alternativa uobičajenio korišćenim sintetičkim agensima.

Reference

Al-Shabib, N. A., Husain, F. M., Ahmad, I., Khan, M. S., Khan, R. A., & Khan, J. M. (2017). Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control, 79, 325-332. https://doi.org/10.1016/j.foodcont.2017.03.004

Cáceres, M., Hidalgo, W., Stashenko, E., Torres, R., & Ortiz, C. (2020). Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics (Basel), 9(4), 147. https://doi.org/ 10.3390/antibiotics9040147

Campana, R., Casettari, L., Fagioli, L., Cespi, M., Bonacucina, G., & Baffone, W. (2017). Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. International Journal of Food Microbiology, 241, 132-140.

           https://doi.org/10.1016/j.ijfoodmicro.2016.10.021

CLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts (3rd ed.). Wayne, PA: Clinical and Laboratory Standards Institute; (Approved standard. M27-A3).

Cosentino, S., Tuberoso, S. I. G., Pisano, B., Satta, M., Mascia, V., Arzedi, E., & Palmas, F. (1999). In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology, 29, 130-135. https://doi.org/10.1046/j.1472-765x.1999.00605.x

Firmino, D. F., Cavalcante, T. T. A., Gomes, G. A., Firmino, N. C. S., Rosa, L. D., de Carvalho, M. G., & Catunda, F. E. A. (2018). Antibacterial and antibiofilm activities of Cinnamomum sp. essential oil and cinnamaldehyde: antimicrobial activities. The Scientific World Journal, 2018, 1-9. https://doi.org/10.1155/2018/7405736

Giordani, R., Regli, P., Kaloustian, J., Mikail, C., Abou, L., & Portugal, H. (2004). Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytotherapy Research, 18(12), 990-995. https://doi.org/10.1002/ptr.1594

Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., Polissiou, M., Adiguzel, A., & Ozkan, H. (2007). Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. Longifolia. Food Chemistry, 103(4), 1449-1456. https://doi.org/10.1016/j.foodchem.2006.10.061

Knowles, J. R., Roller, S., Murray, D. B., & Naidu, A. S. (2005). Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology, 71(2), 797-803. https://doi.org/10.1128/AEM.71.2.797-803.2005

Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel), 6(12), 1451-1474. https://doi.org/10.3390/ph6121451

NCCLS. (2003). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Wayne, PA: National Committee for Clinical Laboratory Standards.

Mith, H., Dure, R., Delcenserie, V., Zhiri, A., Daube, G., & Clinquart, A. (2014). Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Science and Nutrition, 2(4), 403-416. https://doi.org/10.1002/fsn3.116

O’Bryan, C. A., Pendleton, S. J., Crandall, P. G., & Ricke, S. C. (2015). Potential of plant essential oils and their components in animal agriculture – in vitro studies on antibacterial mode. Frontiers in Veterinary Science, 2, 1-8. https://doi.org/ 10.3389/fvets.2015.00035

Orhan-Yanıkan, E., da Silva-Janeiro, S., Ruiz-Rico, M., Jiménez-Belenguer, A. I., Ayhan, K., & Barat, J. M. (2019). Essential oils compounds as antimicrobial and antibiofilm agents against strains present in the meat industry. Food Control, 101(2), 29-38. https://doi.org/10.1016/j.foodcont.2019.02.035

Purkait, S., Bhattacharya, A., Bag, A., & Chattopadhyay, R. R. (2018). Antibacterial and antioxidant potential of essential oils of five spices. Journal of Food Quality and Hazard Control, 5(2), 61-71. https://doi.org/10.29252/jfqhc.5.2.6

Sakkas, H., & Papadopoulou C. (2017). Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of Microbiology and Biotechnology. 27(3), 429-438. https://doi.org/10.4014/jmb.1608.08024

Semeniuc, C. A., Pop, C. R., & Rotar, A. M. (2017). Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. Journal of Food and Drug Analysis, 25(2), 403-408. https://doi.org/10.1016/j.jfda.2016.06.002

Srey, S., Jahid, I. K., & Ha, S. D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31(2), 572-585. https://doi.org/10.1016/j.foodcont.2012.12.001

Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evidence-Based Complementary and Alternative Medicine, 2016, 1-21. https://doi.org/10.1155/2016/3012462

Tomičić, Z., Tomičić, R., Smole Možina, S., Bucar, F., Turek, I., & Raspor, P. (2022). Antifungal and anti-adhesion activity of plant extracts and essential oils against Candida spp. and Pichia spp. Journal of Food and Nutrition Research, 61(1), 61-68.

Tomičić, Z., Zupan, J., Matos, T., & Raspor, P. (2016). Probiotic yeast Saccharomyces boulardii (nom. nud.) modulates adhesive properties of Candida glabrata. Medical Mycology, 54, 835-845. https://10.1093/mmy/myw026

Trevisan, D. A. C., da Silva, A. F., Negri, M., de Abreu Filho, B. A., Machinski Junior, M., Patussi, E. V., Zanetti Campanerut-Sá, P. A., & Graton Mikcha, J. M. (2018). Antibacterial and antibiofilm activity of carvacrol against Salmonella enterica serotype Typhimurium. Brazilian Journal of Pharmaceutical Sciences, 54(1), e17229. https://doi.org/10.1590/s2175-97902018000117229

Valdivieso-Ugarte, M., Gomez-Llorente, C., Plaza-Díaz, J., & Gil, Á. (2019). Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients, 11(11), 2786. https://doi.org/ 10.3390/nu11112786

Objavljeno
2022/08/03
Broj časopisa
Rubrika
Originalni naučni rad