SADRŽAJ LAKTATA, UKUPNIH POLIFENOLA I ANTIOKSIDATIVNA AKTIVNOST ODABRANIH KOMERCIJALNIH JOGURTA SA DOMAĆEG TRŽIŠTA

  • Tamara Popovic Institute for medical research University of Belgrade
  • Biljana Pokimica Institute for medical research University of Belgrade
  • Marija Takić Research associate
  • Gordana Petrović Oggiano Research associate
  • Jasmina Debeljak Martačić Institute for medical research University of Belgrade
  • Ivana Šarac Institute for medical research University of Belgrade
  • Marija Glibetić Institut za medicinska istraživanja Univerziteta u Beogradu
Ključne reči: običan jogurt, voćni jogurt, jagode, pakovanje

Sažetak


Jogurt je jedan od najpopularnijih mlečnih proizvoda širom sveta, čiji je ukus pod velikim uticajem sadržaja mlečne kiseline. Jogurti sa voćnim prerađevinama sadrže polifenole, sekundarne biljne metabolite sa dokazanim antioksidativnim svojstvima. Kako ne postoje podaci o količini laktata i sadržaju polifenola u komercijalnim jogurtima u Srbiji, cilj ovog istraživanja bio je da se utvrdi nivo laktata i polifenola, kao i antioksidativna aktivnost u odabranim jogurtima. Analizirano je 15 običnih i 5 voćnih jogurta sa prerađevinama od jagoda. Sadržaj laktata bio je od 0,83 do 1,33%. Tri obična jogurta u plastičnoj ambalaži su se razlikovala po sadržaju laktata. Nije bilo razlike u sadržaju laktata među istim običnim jogurtima upakovanim u plastične i Tetra Pack kontejnere. Voćni jogurti sa prerađevinama od jagoda razlikovali su se u ukupnom sadržaju polifenola koji se kretao u rasponu od 6,84 do 29,11 mg GAE/100 g i po antioksidativnim svojstvima utvrđenim testom redukcione moći sa Fe3+ jonima (od 0,22 do 0,79) i DPPH testom (od 28,13±1.93 do 87,23±0.15%), dok nije bilo razlike u pogledu laktata. Naši rezultati dali su nove informacije o nivoima laktata, ukupnih polifenola i antioksidativne aktivnosti odabranih komercijalnih jogurta dostupnih na domaćem tržištu.

Biografija autora

Biljana Pokimica, Institute for medical research University of Belgrade

Research associate

Reference

 

Aaby, K., Mazur, S., Nes, A., & Skrede, G. (2012). Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chemistry132(1), 86-97. https://doi.org/10.1016/j.foodchem.2011.10.037>

Alvarez-Suarez, J. M., Dekanski, D., Ristić, S., Radonjić, N. V., Petronijević, N. D., Giampieri, F., Astolfi, P., González-Paramás, A. M., Santos-Buelga, C., Tulipani, S., Quiles, J. L., Mezzetti, B., & Battino, M. (2011). Strawberry polyphenols attenuate ethanol-induced gastric lesions in rats by activation of antioxidant enzymes and attenuation of MDA increase. PloS one6(10), e25878. https://doi.org/10.1371/journal.pone.0025878

Amal, A., Eman, A., & Nahla, S. Z. (2016). Fruit flavored yogurt: Chemical, functional and rheological properties. International Journal of Environmental and Agriculture Research2(5), 57-66.  https://www.academia.edu/download/46094454/IJOEAR-MAY-2016-7.pdf

Arfaoui L. (2021). Dietary plant polyphenols: effects of food processing on their content and bioavailability. Molecules (Basel, Switzerland)26(10), 2959. https://doi.org/10.3390/molecules26102959>

Basu, A., Morris, S., Nguyen, A., Betts, N. M., Fu, D., & Lyons, T. J. (2016). Effects of Dietary strawberry supplementation on antioxidant biomarkers in obese adults with above optimal serum lipids. Journal of Nutrition and Metabolism2016, 3910630. https://doi.org/10.1155/2016/3910630>

Batinić, P., Milošević, M., Lukić, M., Prijić, Ž., Gordanić, S., Filipović, V., Marinković, A., Bugarski, B., & Marković, T. (2022). In vitro evaluation of antioxidative activities of the extracts of petals of Paeonia lactiflora and Calendula officinalis incorporated in the new forms of biobased carriers. Food and Feed Research, 23-35. https://doi.org/10.5937/ffr0-36381

Bhalodia, N. R., Nariya, P. B., Acharya, R. N., & Shukla, V. J. (2013). In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. Ayu34(2), 209-214. https://doi.org/10.4103/0974-8520.119684>

Blainski, A., Lopes, G. C., & de Mello, J. C. (2013). Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules (Basel, Switzerland)18(6), 6852-6865. https://doi.org/10.3390/molecules18066852>

Borshchevskaya, L. N., Gordeeva, T. L., Kalinina, A. N., & Sineokii, S. P. (2016). Spectrophotometric determination of lactic acid. Journal of Analytical Chemistry71(8), 755-758. https://doi.org/10.1134/S1061934816080037

Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200.
http://dx.doi.org/10.1038/1811199a0

Chen, C., Zhao, S., Hao, G., Yu, H., Tian, H., & Zhao, G. (2017). Role of lactic acid bacteria on the yogurt flavour: A review. International Journal of Food Properties20(1), S316-S330. https://doi.org/10.1080/10942912.2017.1295988>

Cheng, H. (2010). Volatile flavor compounds in yogurt: a review. Critical Reviews in Food Science and Nutrition50(10), 938-950. https://doi.org/10.1080/10408390903044081>

Citta, A., Folda, A., Scalcon, V., Scutari, G., Bindoli, A., Bellamio, M., Feller, E., & Rigobello, M. P. (2017). Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life. Food Science & Nutrition5(6), 1079-1087. https://doi.org/10.1002/fsn3.493>

Cruz, A. G., Castro, W. F., Faria, J. A., Bogusz Jr, S., Granato, D., Celeguini, R. M., Lima-Pallone, J.,  & Godoy, H. T. (2012). Glucose oxidase: A potential option to decrease the oxidative stress in stirred probiotic yogurt. LWT47(2), 512-515.  https://doi.org/10.1016/j.lwt.2012.01.037>

Deshwal, G. K., Tiwari, S., Kumar, A., Raman, R. K., & Kadyan, S. (2021). Review on factors affecting and control of post-acidification in yoghurt and related products. Trends in Food Science & Technology109, 499-512. https://doi.org/10.1016/j.tifs.2021.01.057>

Dinkçi, N., Aktaş, M., Akdeniz, V., & Sirbu, A. (2021). The Influence of hazelnut skin addition on quality properties and antioxidant activity of functional yogurt. Foods (Basel, Switzerland)10(11), 2855. https://doi.org/10.3390/foods10112855>

Ekinci, F. Y., & Gurel, M. (2008). Effect of using propionic acid bacteria as an adjunct culture in yogurt production. Journal of Dairy Science91(3), 892-899. https://doi.org/10.3168/jds.2007-0244>

Fernandez-Garcia, E., & McGregor, J. U. (1994). Determination of organic acids during the fermentation and cold storage of yogurt. Journal of Dairy Science77(10), 2934-2939. https://doi.org/10.3168/jds.S0022-0302(94)77234-9>

Flint, H. J., Duncan, S. H., Scott, K. P., & Louis, P. (2015). Links between diet, gut microbiota composition and gut metabolism. Proceedings of the Nutrition Society74(1), 13-22. https://doi.org/10.1017/S0029665114001463>

Fraga, C. G., Croft, K. D., Kennedy, D. O., & Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function10(2), 514-528. https://doi.org/10.1039/c8fo01997e>

Frejnagel, S., & Juskiewicz, J. (2011). Dose-dependent effects of polyphenolic extracts from green tea, blue-berried honeysuckle, and chokeberry on rat caecal fermentation processes. Planta Medica77(09), 888-893. https://doi.org/10.1055/s-0030-1250664>

Güler, Z., & Park, Y. W. (2011). Characteristics of physico-chemical properties, volatile compounds and free fatty acid profiles of commercial set-type Turkish yoghurts. Open Journal of Animal Sciences1(01), 1-9.  http://dx.doi.org/10.4236/ojas.2011.11001>

Hoque, R., Farooq, A., Ghani, A., Gorelick, F., & Mehal, W. Z. (2014). Lactate reduces liver and pancreatic injury in Toll-like receptor–and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology146(7), 1763-1774. https://doi.org/10.1053/j.gastro.2014.03.014>

Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry53(6), 1841–1856. https://doi.org/10.1021/jf030723c>

Huang, M., Han, Y., Li, L., Rakariyatham, K., Wu, X., Gao, Z., & Xiao, H. (2022). Protective effects of non-extractable phenolics from strawberry against inflammation and colon cancer in vitro. Food Chemistry374, 131759. https://doi.org/10.1016/j.foodchem.2021.131759>

Iraporda, C., Romanin, D. E., Rumbo, M., Garrote, G. L., & Abraham, A. G. (2014). The role of lactate on the immunomodulatory properties of the nonbacterial fraction of kefir. Food Research International62, 247-253.  https://doi.org/10.1016/j.foodres.2014.03.003>

Jaster, H., Arend, G. D., Rezzadori, K., Chaves, V. C., Reginatto, F. H., & Petrus, J. C. C. (2018). Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained by block freeze concentration. Food Research International104, 119-125. https://doi.org/10.1016/j.foodres.2017.10.006>

Jayasinghe, O., Fernando, S., Jayamanne, V., & Hettiarachchi, D. (2015). Production of a novel fruit-yoghurt using dragon fruit (Hylocereus undatus L.). European Scientific Journal11(3). https://eujournal.org/index.php/esj/article/view/4998>

Kim, D. H., Cho, W. Y., Yeon, S. J., Choi, S. H., & Lee, C. H. (2019). Effects of lotus (Nelumbo nucifera) leaf on quality and antioxidant activity of yogurt during refrigerated storage. Food Science of Animal Resources39(5), 792-803.  https://doi.org/10.5851/kosfa.2019.e69>

Mahmood, T., Anwar, F., Abbas, M., & Saari, N. (2012). Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan. International Journal of Molecular Sciences13(4), 4591-4607. https://doi.org/10.3390/ijms13044591>

Moldovan, B., Iasko, B., & David, L. (2016). Antioxidant activity and total phenolic content of some commercial fruit-flavoured yogurts. Studia Universitatis Babes-Bolyai. Chemia61(3), 101-108. http://chem.ubbcluj.ro/~studiachemia/issues/chemia2016_3/tom1/10Moldovan_etal_101_108.pdf

Murakami, A. (2014). Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Archives of Biochemistry and Biophysics557, 3-10. https://doi.org/10.1016/j.abb.2014.04.018>

Nowicka, A., Kucharska, A. Z., Sokół-Łętowska, A., & Fecka, I. (2019). Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria × ananassa Duch. Food Chemistry270, 32-46. https://doi.org/10.1016/j.foodchem.2018.07.015>

Ocké, M. C., Westenbrink, S., van Rossum, C. T., Temme, E. H., van der Vossen-Wijmenga, W., & Verkaik-Kloosterman, J. (2021). The essential role of food composition databases for public health nutrition–Experiences from the Netherlands. Journal of Food Composition and Analysis101, 103967. https://doi.org/10.1016/j.jfca.2021.103967>

Olas, B. (2018). Berry phenolic antioxidants – implications for human health? Frontiers in Pharmacology9, 78-91.  https://doi.org/10.3389/fphar.2018.00078>

Ounnas, F., de Lorgeril, M., Salen, P., Laporte, F., Calani, L., Mena, P., Brighenti, F., Del Rio, D., & Demeilliers, C. (2017). Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect. Scientific Reports7, 40162. https://doi.org/10.1038/srep40162

Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics44(6), 307-315.  https://doi.org/10.5264/eiyogakuzashi.44.307>

Oseredczuk, M.,  Salvini, S.,  Roe, M.,  & Moller, A. (2009).  Guidelines for Quality Index attribution to original data from Scientific literature or reports for EuroFIR data interchange, EuroFIR Network of Excellence, D1.3.21, revised version.  http://www.eurofir.org/wp-content/uploads/2014/05/3.-Guidelines-for-Quality-Index-attribution-to-original-data-from-Scientific-literature-or-reports-for-EuroFIR-data-interchange.pdf class="cf01"> 

Pavlović, N. V., Mladenović, J., Stevović, V., Bošković-Rakočević, L., Moravčević, Đ., Poštić, D., & Zdravković, J. (2021). Effect of processing on vitamin C content, total phenols and antioxidative activity of organically grown red beetroot (Beta vulgaris ssp. Rubra)Food and Feed Research48(2), 131-139. https://doi.org/10.5937/ffr0-31354

Pereira, E., Barros, L., & Ferreira, I. C. (2013). Relevance of the mention of antioxidant properties in yogurt labels: In vitro evaluation and chromatographic analysis. Antioxidants2(2), 62-76. https://doi.org/10.3390/antiox2020062>

Routray, W., & Mishra, H. N. (2011). Scientific and technical aspects of yogurt aroma and taste: a review. Comprehensive Reviews in Food Science and Food Safety10(4), 208-220. https://doi.org/10.1111/j.1541-4337.2011.00151.x>

Saint-Eve, A., Lévy, C., Le Moigne, M., Ducruet, V., & Souchon, I. (2008). Quality changes in yogurt during storage in different packaging materials. Food Chemistry110(2), 285-293. https://doi.org/10.1016/j.foodchem.2008.01.070>

Salazar-Orbea, G. L., García-Villalba, R., Tomás-Barberán, F. A., & Sánchez-Siles, L. M. (2021). High-pressure processing vs. thermal treatment: effect on the stability of polyphenols in strawberry and apple products. Foods (Basel, Switzerland)10(12), 2919. https://doi.org/10.3390/foods10122919>

Salehi, F. (2021). Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. Food Science & Nutrition9(8), 4666-4686. https://doi.org/10.1002/fsn3.2430>

Ścibisz, I., Ziarno, M., & Mitek, M. (2019). Color stability of fruit yogurt during storage. Journal of Food Science and Technology56(4), 1997-2009. https://doi.org/10.1007/s13197-019-03668-y>

Sfakianakis, P., & Tzia, C. (2014). Conventional and innovative processing of milk for yogurt manufacture; development of texture and flavor: a review. Foods3(1), 176-193. https://doi.org/10.3390/foods3010176>

Teneva‐Angelova, T., Balabanova, T., Boyanova, P., & Beshkova, D. (2018). Traditional Balkan fermented milk products. Engineering in Life Sciences18(11), 807-819. https://doi.org/10.1002/elsc.201800050>

Tolu, A., & Altun, I. (2021). Comparison of homemade and commercial yoghurt in Van province, Turkey. Food Science and Technology, 42. https://doi.org/10.1590/fst.08321>

Vahedi, N., Tehrani, M. M., & Shahidi, F. (2008). Optimizing of fruit yoghurt formulation and evaluating its quality during storage. American-Eurasian Journal of Agricultural & Environmental Science3(6), 922-927.

Vénica, C. I., Perotti, M. C., & Bergamini, C. V. (2014). Organic acids profiles in lactose-hydrolyzed yogurt with different matrix composition. Dairy Science & Technology94(6), 561-580. https://doi.org/10.1007/s13594-014-0180-7>

Weerathilake, W. A. D. V., Rasika, D. M. D., Ruwanmali, J. K. U., & Munasinghe, M. A. D. D. (2014). The evolution, processing, varieties and health benefits of yogurt. International Journal of Scientific and Research Publications4(4), 1-10. http://www.ijsrp.org/research-paper-0414.php?rp=P282540>

Zec, M., Debeljak Martačić, J., Ranković, S., Pokimica, B., Tomić, M., Ignjatović, Đ., Glibetic, M., & Popović, T. (2017). Effects of Aronia melanocarpa juice on plasma and liver phospholipid fatty acid composition in Wistar rats. Acta Veterinaria67(1), 107-120. https://doi.org/10.1515/acve-2017-0010>

 

Objavljeno
2022/11/07
Broj časopisa
Rubrika
Originalni naučni rad