NUTRITIVNI SASTAV I BIOAKTIVNA SVOJSTVA INTEGRALNOG BRAŠNA DOBIJENOG OD INBRED LINIJA KUKURUZA

  • Valentina Nikolić Maize Research Institute, Zemun Polje
Ključne reči: kukuruz, integralno brašno, inbred linije, nutritivni sastav, bioaktivna svojstva

Sažetak


Cilj ovog istraživanja bio je da se odrede hemijski sastav i bioaktivna svojstva integralnog brašna dobijenog od jedanaest inbred linija kukuruza u cilju identifikacije genotipova sa povećanim potencijalom za razvoj hibrida visoke nutritivne i funkcionalne vrednosti, pogodnih za proizvodnju hrane. Linije kukuruza, uključujući sedam standardnih žutih, dve QPM i dve crvene linije zrna, gajene su na oglednom polju Instituta za kukuruz na lokaciji Zemun Polje, Srbija. Integralno kukuruzno brašno dobijeno je mlevenjem u laboratorijskom mlinu. Procena hemijskog sastava i sadržaja pojedinih bioaktivnih jedinjenja, kao i ukupnog antioksidativnog kapaciteta, sprovedena je primenom standardnih laboratorijskih procedura. Najviši sadržaj skroba (73,73%) utvrđen je u liniji L8, dok je linija L10 imala najveći sadržaj proteina (12,82%). Među rastvorljivim proteinima, frakcija α-zeina bila je dominantna u većini linija, u rasponu od 0,92% do 3,57%. Najveći sadržaj ukupnih vlakana (NDF) utvrđen je u zrnu crvene boje Linije 9 (15,77%). Linija L8 je bila najbogatija ukupnim karotenoidima (21,08 mg βCE/g s.m.), dok je linija L7 imala najveći ukupni antioksidativni kapacitet (34,30 mmol Trolox/kg d.m.), što se može objasniti prisustvom antocijana u crvenom zrnu. Linija L1 je imala najveći sadržaj ukupnih šećera (3,36%), a linija L4 imala je najmanji (1,44%). Svi uzorci novih inbred linija ispitivani u ovoj studiji pokazali su dobre parametre kvaliteta u pogledu hemijskog sastava i bioaktivnih svojstava. Dobijeni rezultati mogu dati neke dragocene smernice potrebne u narednim fazama oplemenjivanja kukuruza, kao i otvoriti različite mogućnosti za korišćenje integralnog kukuruznog brašna u prehrambenoj industriji.

 

Reference

AACC (1995). Pigment. Methods 14-50. In: AACC Methods (9th ed.) American Association of Cereal Chemistry, USA.


Amegbor, I. K., van Biljon, A., Shargie, N., Tarekegne, A., & Labuschagne, M. T. (2022). Grain quality and yield potential of hybrids from quality and non-quality protein maize inbred lines. Journal of Cereal Science, 107, 103544. https://doi.org/10.1016/j.jcs.2022.103544


Annor, B., Badu-Apraku, B., 2016. Gene action controlling grain yield and other agronomic traits of extra-early quality protein maize under stress and non-stress conditions. Euphytica, 212, 213–228. https://doi.org/10.1007/s10681-016-1757-4


AOAC. (1990). Official Methods of Analysis (15th ed.). Arlington, VA: Association of Official Analytical. Chemists


AOAC. (2000). Official Methods of Analysis (17th ed.). Gaithersburg, MD: Association of Official Analytical Chemists.


Babu, R., Prasanna, B., 2014. Molecular breeding for quality protein maize (QPM). In: Tuberosa, R., Graner, A., Frison, E. (Eds.), Genomics of Plant Genetic Resources. Springer, Dordrecht, pp. 490–505. https://doi.org/10.1007/978-94-007-7575-6.


Benchimol, L. L., de Souza Jr, C. L., Garcia, A. A. F., Kono, P. M. S., Mangolin, C. A., Barbosa, A. M. M., ... & De Souza, A. P. (2000). Genetic diversity in tropical maize inbred lines: heterotic group assignment and hybrid performance determined by RFLP markers. Plant breeding, 119(6), 491-496. https://doi.org/10.1046/j.1439-0523.2000.00539.x


Cheng, W., Sun, Y., Fan, M., Li, Y., Wang, L., & Qian, H. (2021). Wheat bran, as the resource of dietary fiber: a review. Critical Reviews in Food Science and Nutrition, 1-28. https://doi.org/10.1080/10408398.2021.1913399


Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition, 5, 87. https://doi.org/10.3389/fnut.2018.00087


Eckhoff, S. R., & Watson, S. A. (2009). Corn and sorghum starches: Production. In J. N. BeMiller & R. L. Whistler (Eds.), Starch: Chemistry and technology (3rd ed., pp. 373-439). Academic Press.


Egan, H., Kirk, R., & Sawyer, R. (1981). The Luff Schoorl method. Sugars and preserves. Pearson’s chemical analysis of foods, 8, 152-153.


Gong, L., Chi, H., Wang, J., Zhang, H., & Sun, B. (2019). In vitro fermentabilities of whole wheat as compared with refined wheat in different cultivars. Journal of Functional Foods, 52, 505-515. https://doi.org/10.1016/j.jff.2018.11.027


Huang, J., Shang, Z. Q., Man, J. M., Liu, Q. Q., Zhu, C. J., & Wei, C. X. (2015). Comparison of molecular structures and functional properties of high-amylose starches from rice transgenic line and commercial maize. Food Hydrocolloids, 46, 172-179. https://doi.org/10.1016/j.foodhyd.2014.12.019


ISO 10520 (1997) Determination of starch content - Ewers polarimetric method. International


standard, 1: 1-8.


Kaur, N., Singh, B., & Sharma, S. (2019). Comparison of quality protein maize (QPM) and normal maize with respect to properties of instant porridge. LWT, 99, 291-298. https://doi.org/10.1016/j.lwt.2018.09.070


Landry, J., & Moureaux, T. (1982). Distribution and amino acid composition of protein fractions in opaque-2 maize grains. Phytochemistry, 21(8), 1865-1869. https://doi.org/10.1016/0031-9422(82)83004-5


Lawton, J. W. (2002). Zein: A history of processing and use. Cereal Chemistry, 79(1), 1-18. https://doi.org/10.1094/CCHEM.2002.79.1.1


Lin, L., Guo, D., Zhao, L., Zhang, X., Wang, J., Zhang, F., & Wei, C. (2016). Comparative structure of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids, 52, 19-28. https://doi.org/10.1016/j.foodhyd.2015.06.008


Menkir, A., Liu, W., White, W. S., Maziya-Dixon, B., & Rocheford, T. (2008). Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chemistry, 109(3), 521-529. https://doi.org/10.1016/j.foodchem.2008.01.002


Mesarović J., Srdić, J., Mladenović Drinić, S., Dragi-ĉević, V., Simić, M., Brankov M. & Milojković-Opsenica, D. (2018). Antioxidant status of the different sweet maize hybrids under herbicide and foliar fertilizer application. Genetika, 50, 1023-1033. https://doi.org/10.2298/GENSR1803023M


Mesarović, J., Srdić, J., Mladenović Drinić, S., Dragičević, V., Simić, M., Brankov, M. & Milojković-Opsenica, D. (2019). Evaluation of the nutritional profile of sweet maize after herbicide and foliar fertilizer application. Journal of Cereal Science, 87, 132-137. https://doi.org/10.1016/j.jcs.2019.03.017


Milašinović-Šeremešić, M. S., Radosavljević, M., Srdić, J. Ž., Tomičić, Z. M., & Đuragić, O. M. (2019). Physical traits and nutritional quality of selected Serbian maize genotypes differing in kernel hardness and colour. Food and Feed Research, 46(1), 51-59. https://doi.org/10.5937/FFR1901051M


Mladenović Drinić, S., Anđelković, V., Srdić, J., Grčić, N., Filipović, M., Kravić, N., & Nikolić, A. (2022). Genetic diversity of maize inbreds with different kernel type using snp markers. Book of Proceedings, XIII International Scientific Agriculture Symposium „Agrosym 2022“, 6-9 October 2022., Jahorina, Bosnia and Herzegovina., 154-159. http://agrosym.ues.rs.ba/article/showpdf/BOOK_OF_PROCEEDINGS_2022.pdf


Mladenović Drinić, S., Vukadinović, J., Srdić, J., Šeremešić, M. M., & Andjelkovic, V. (2021). Effect of cooking on the content of carotenoids and tocopherols in sweet corn. Food and Feed Research, 48(2), 119-129. https://doi.org/10.5937/ffr0-31960


Nikolić, V., Božinović, S., Vančetović, J., Radosavljević, M., & Žilić, S. (2020). Grain properties of yellow and red kernel maize hybrids from Serbia. Selekcija i semenarstvo, 26(2), 7-14. https://doi.org/10.5937/SelSem2002007N


Parris, N., Moreau, R. A., Johnston, D. B., Singh, V., & Dickey, L. C. (2006). Protein distribution in commercial wet-and dry-milled corn germ. Journal of Agricultural and Food Chemistry, 54(13), 4868-4872. https://doi.org/10.1021/jf060336d


Radosavljević, M., Milašinović Šeremešić, M., Terzić, D., Jovanović, Ž., Srdić, J., & Nikolić, V. (2020). Grain chemical composition of dents, popping maize and sweet maize genotypes. Journal on Processing and Energy in Agriculture, 24(2), 77-80. https://doi.org/10.5937/jpea24-28790


Raffan, S., & Halford, N. G. (2019). Acrylamide in food: Progress in and prospects for genetic and agronomic solutions. Annals of Applied Biology, 175(3), 259-281. https://doi.org/10.1111/aab.12536


Singh, J., Metrani, R., Shivanagoudra, S. R., Jayaprakasha, G. K., & Patil, B. S. (2019). Review on bile acids: Effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds. Journal of Agricultural and Food Chemistry, 67(33), 9124-9138. https://doi.org/10.1021/acs.jafc.8b07306


Statista (2022) Global corn production in 2021/2022, by country https://www.statista.com/statistics/254292/global-corn-production-by-country/


Watson, S. A. (2003). Description, development, structure, and composition of the corn kernel. In: White, P. J., Johnson, L. A. (eds.), Corn Chemistry and Technology, American Association of Cereal Chemists, Inc., St. Paul, MN, USA, 69-106.


Tollenaar, M., Ahmadzadeh, A., & Lee, E. A. (2004). Physiological basis of heterosis for grain yield in maize. Crop Science, 44, 2086-2094. https://doi.org/10.2135/cropsci2004.2086


Žilić, S., Hadži-Tašković Šukalović, V., Milašinović, M., Ignjatović-Micić, D., Maksimović, M., & Semenčenko, V. (2010). Effect of micronisation on the composition and properties of the flour from white, yellow and red maize. Food Technology and Biotechnology, 48(2), 198-206.


Žilić, S., Šukalović, V. H. T., Dodig, D., Maksimović, V., Maksimović, M., & Basić, Z. (2011). Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. Journal of Cereal Science, 54(3), 417-424. https://doi.org/10.1016/j.jcs.2011.08.006


Žilić, S., Serpen, A., Akıllıoğlu, G., Gökmen, V., & Vančetović, J. (2012). Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 60(5), 1224-1231. https://doi.org/10.1021/jf204367z


 


Žilić, S., Nikolić, V., Mogol, B. A., Hamzalıoğlu, A., Tas, N. G., Kocadağlı, T., ... & Gokmen, V. (2022). Acrylamide in Corn-Based Thermally Processed Foods: A Review. Journal of Agricultural and Food Chemistry, 70(14), 4165-4181. https://doi.org/10.1021/acs.jafc.1c07249


 

Objavljeno
2023/02/09
Broj časopisa
Rubrika
Originalni naučni rad