INDUKOVANE PLURIPOTENTNE MATIČNE ĆELIJE: GDE SMO TRENUTNO?

  • Nemanja Rančić Centre for Clinical Pharmacology; Medical Faculty Military Medical Academy, University of Defence, Belgrade, Serbia https://orcid.org/0000-0002-5122-8094
  • Sanja Rascanin Fakultet Medicine, VMA, Beograd
  • Milijana Miljkovic Medicinski fakultet Univerziteta u Kragujevcu, Kragujevac
  • Mirjana Jovanovic Klinika za psihijatriju, Klinički centar Kragujevac, Kragujevac
Ključne reči: Indukovane pluripotentne matične ćelije, terapija

Sažetak


Indukovane pluripotentne matične ćelije (iPSC) su vrsta pluripotentnih matičnih ćelija koje nastaju reprogramiranjem genoma zrele (diferentovane) somatske ćelije u stadijum pluripotentne matične ćelije in vitro indukcijom prisilne ekspresije specifičnih faktora transkripcije koji su važni za održavanje pluripotencije kao što je Sok2, Oct3/4, c-Mic, KLF4; ili korišćenjem sličog seta četiri transkripciona faktora Oct4, Sok2, Lin28 i Nanog. Čini se da su iPSC veoma slične embrionalnim matičnim ćelijama (ESC) u pogledu morfologije, markera na površini ćelije i nivoa ekspresije gena, ali nedavne studije su pokazale razlike između ova dva tipa ćelija. Međutim, iPSC mogu imati potencijalnu primenu u regenerativnoj medicini, transplantaciji, testiranju lekova, modeliranju bolesti i izbegavanju odbacivanja tkiva, a njihova upotreba je skopčana sa manjim etičkim dilemama u poređenju sa ESC. Cilj ovog rada je da predstavi najvažnije karakteristike iPSC-a koje mogu imati primenu u lečenju.

Reference

1. Lanza R, Аtala А. Essentials of Stem Cell Biology, 3rd ed. Elsevier; 2014.
2. Hongxiang H, Yongming T, Min H, Xiaoning Z. Stem Cells: General Features and Characteristics, Stem Cells in Clinic and Research. Ali Gholamrezanezhad, IntechOpen; 2011. doi: 10.5772/23755. Available from: https://www.intechopen.com/books/stem-cells-in-clinic-and-research/stem-cells-general-features-and-characteristics
3. Novosadova EV, Grivennikov IA. Induced pluripotent stem cells: from derivation to application in biochemical and biomedical research. Biochemistry (Mosc). 2014; 79(13): 1425-1441. doi: 10.1134/S000629791413001X.
4. Walia B, Satija N, Tripathi RP, Gangenahalli GU. Induced pluripotent stem cells: fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Rev Rep. 2012; 8(1): 100-115. doi: 10.1007/s12015-011-9279-x.
5. Rungarunlert S, Techakumphu M, Pirity MK, Dinnyes A. Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors. World J Stem Cells. 2009; 1(1): 11-21. doi: 10.4252/wjsc.v1.i1.11.
6. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, et al. Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures. Cell Stem Cell. 2009; 5(1): 111-123. doi: 10.1016/j.stem.2009.06.008.
7. Ghosh Z, Wilson KD, Wu Y, Hu S, Quertermous T, Wu JC. Persistent Donor Cell Gene Expression among Human Induced Pluripotent Stem Cells Contributes to Differences with Human Embryonic Stem Cells. PLoS One. 2010; 5(2): e8975. doi:10.1371/journal.pone.0008975.
8. Lako M, Armstrong L, Stojkovic M. Induced pluripotent stem cells: it looks simple but can looks deceive? Stem Cells. 2010; 28(5): 845-850. doi: 10.1002/stem.411.
9. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663-676. doi: 10.1016/j.cell.2006.07.024.
10. Gurdon JB. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu Rev Cell Dev Biol. 2006; 22: 1-22. doi: 10.1146/annurev.cellbio.22.090805.140144.
11. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131(5): 861-872. doi: 10.1016/j.cell.2007.11.019.
12. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318(5858): 1917-1920. doi: 10.1126/science.1151526.
13. Wakui T, Matsumoto T, Matsubara K, Kawasaki T, Yamaguchi H, Akutsu H. Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells. J Med Imaging (Bellingham). 2017; 4(4): 044003. doi: 10.1117/1.JMI.4.4.044003.
14. Yoshida Y, Yamanaka S. Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation. 2010; 122(1): 80-87. doi: 10.1161/CIRCULATIONAHA.109.881433.
15. Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif. 2008; 41 Suppl 1(Suppl 1): 51-56. doi: 10.1111/j.1365-2184.2008.00493.x.
16. Tanabe K, Takahashi K. The Past, Present and Future of Induced Pluripotent Stem Cells, Embryonic Stem Cells - Differentiation and Pluripotent Alternatives. Kallos MS. IntechOpen; 2011. doi: 10.5772/24198. Available from: https://www.intechopen.com/books/embryonic-stem-cells-differentiation-and-pluripotent-alternatives/the-past-present-and-future-of-induced-pluripotent-stem-cells
17. Walia B, Satija N, Tripathi RP, Gangenahalli GU. Induced pluripotent stem cells: fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Rev Rep. 2012; 8(1): 100-115. doi: 10.1007/s12015-011-9279-x.
18. Wong RCB, Smith EL, Donovan PJ. New Techniques in the Generation of Induced Pluripotent Stem Cells, Embryonic Stem Cells - Differentiation and Pluripotent Alternatives. Kallos MS. IntechOpen; 2011. doi: 10.5772/25208. Available from: https://www.intechopen.com/books/embryonic-stem-cells-differentiation-and-pluripotent-alternatives/new-techniques-in-the-generation-of-induced-pluripotent-stem-cells
19. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A. 2008; 105(8): 2883-2888. doi: 10.1073/pnas.0711983105.
20. Tai L, Teoh HK, Cheong SK. Reprogramming human dermal fibroblast into induced pluripotent stem cells using nonintegrative Sendai virus for transduction. Malays J Pathol. 2018; 40(3): 325-329.
21. Castro-Viñuelas R, Sanjurjo-Rodríguez C, Piñeiro-Ramil M, Hermida-Gómez T, Rodríguez-Fernández S, Oreiro N, et al. Generation and characterization of human induced pluripotent stem cells (iPSCs) from hand osteoarthritis patient-derived fibroblasts. Sci Rep. 2020; 10(1): 4272. doi: 10.1038/s41598-020-61071-6.
22. Belviso I, Sacco AM, Romano V, Schonauer F, Nurzynska D, Montagnani S, et al. Isolation of Adult Human Dermal Fibroblasts from Abdominal Skin and Generation of Induced Pluripotent Stem Cells Using a Non-Integrating Method. J Vis Exp. 2020; (155). doi: 10.3791/60629.
23. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011; 9(1): 17-23. doi: 10.1016/j.stem.2011.06.007. Erratum in: Cell Stem Cell. 2012; 11(6): 854.
24. Kim J, Lengner CJ, Kirak O, Hanna J, Cassady JP, Lodato MA, et al. Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells. 2011; 29(6): 992-1000. doi: 10.1002/stem.641.
25. Liu H, Ye Z, Kim Y, Sharkis S, Jang YY. Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology. 2010; 51(5): 1810-1819. doi: 10.1002/hep.23626.
26. Lim SJ, Ho SC, Mok PL, Tan KL, Ong AH, Gan SC. Induced pluripotent stem cells from human hair follicle keratinocytes as a potential source for in vitro hair follicle cloning. PeerJ. 2016; 4: e2695. doi: 10.7717/peerj.2695.
27. Gu H, Huang X, Xu J, Song L, Liu S, Zhang XB, et al. Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood. Stem Cell Res Ther. 2018; 9(1): 163. doi: 10.1186/s13287-018-0908-z.
28. Streckfuss-Bömeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, et al. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J. 2013; 34(33): 2618-2629. doi: 10.1093/eurheartj/ehs203.
29. Hu Q, Friedrich AM, Johnson LV, Clegg DO. Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells. 2010; 28(11): 1981-1991. doi: 10.1002/stem.531.
30. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448(7151): 313-317. doi: 10.1038/nature05934.
31. Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018; 6: e4370. doi: 10.7717/peerj.4370.
32. Rao MS, Malik N. Assessing iPSC reprogramming methods for their suitability in translational medicine. J Cell Biochem. 2012; 113(10): 3061-3068. doi: 10.1002/jcb.24183.
33. Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008; 3(3): 340-345. doi: 10.1016/j.stem.2008.08.003.
34. Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell. 2008; 3(3): 346-353. doi: 10.1016/j.stem.2008.08.014.
35. Loh YH, Yang JC, De Los Angeles A, Guo C, Cherry A, Rossi DJ, et al. Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA. Curr Protoc Stem Cell Biol. 2012; Chapter 4: Unit4A.5. doi: 10.1002/9780470151808.sc04a05s21.
36. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009; 136(5): 964-977. doi: 10.1016/j.cell.2009.02.013.
37. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008; 322(5903): 945-949. doi: 10.1126/science.1162494.
38. Kallos MS. Embryonic Stem Cells - Differentiation and Pluripotent Alternatives. InTech; 2011: 373-398. Available from: https://www.intechopen.com/books/embryonic-stem-cells-differentiation-and-pluripotent-alternatives
39. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009; 458(7239): 766-770. doi: 10.1038/nature07863.
40. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009; 458(7239): 771-775. doi: 10.1038/nature07864.
41. Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells. 2009; 27(11): 2667-2674. doi: 10.1002/stem.201.
42. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009; 85(8): 348-362. doi: 10.2183/pjab.85.348.
43. Zhou YY, Zeng F. Integration-free methods for generating induced pluripotent stem cells. Genomics Proteomics Bioinformatics. 2013; 11(5): 284-287. doi: 10.1016/j.gpb.2013.09.008.
44. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods. 2010; 7(3): 197-199. doi: 10.1038/nmeth.1426.
45. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010; 7(5): 618-630. doi: 10.1016/j.stem.2010.08.012.
46. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009; 324(5928): 797-801. doi: 10.1126/science.1172482.
47. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011; 8(5): 409-412. doi: 10.1038/nmeth.1591.
48. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009; 4(5): 381-384. doi: 10.1016/j.stem.2009.04.005.
49. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009; 4(6): 472-476. doi: 10.1016/j.stem.2009.05.005.
50. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011; 8(5): 424-429. doi: 10.1038/nmeth.1593.
51. Raščanin S, Rančić N, Dragović S, Jovanović M. Embryonic Stem Cells: Where Do We Stand At The Moment? Acta Medica Medianae 2019; 58(3): 138-146. doi: 10.5633/amm.2019.0320.
52. Halevy T, Urbach A. Comparing ESC and iPSC-Based Models for Human Genetic Disorders. J Clin Med. 2014; 3(4): 1146-1162. doi: 10.3390/jcm3041146.
53. Huang GT. Induced Pluripotent Stem Cells-A New Foundation in Medicine. J Exp Clin Med. 2010; 2(5): 202-217. doi: 10.1016/S1878-3317(10)60033-2.
54. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and Safety Issues of Stem Cell-Based Therapy. Int J Med Sci. 2018; 15(1): 36-45. doi: 10.7150/ijms.21666.
55. Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, et al. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells. Stem Cells. 2015; 33(9): 2643-2651. doi: 10.1002/stem.2070.
56. Crespo M, Vilar E, Tsai SY, Chang K, Amin S, Srinivasan T, et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med. 2017; 23(7): 878-884. doi: 10.1038/nm.4355. Erratum in: Nat Med. 2018; 24(4): 526.
57. Kotini AG, Chang CJ, Boussaad I, Delrow JJ, Dolezal EK, Nagulapally AB, et al. Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol. 2015; 33(6): 646-655. doi: 10.1038/nbt.3178.
58. Kotini AG, Chang CJ, Chow A, Yuan H, Ho TC, Wang T, et al. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia. Cell Stem Cell. 2017; 20(3): 315-328.e7. doi: 10.1016/j.stem.2017.01.009.
59. Lee DF, Su J, Kim HS, Chang B, Papatsenko D, Zhao R, et al. Modeling familial cancer with induced pluripotent stem cells. Cell. 2015; 161(2): 240-254. doi: 10.1016/j.cell.2015.02.045.
60. Mulero-Navarro S, Sevilla A, Roman AC, Lee DF, D'Souza SL, Pardo S, et al. Myeloid Dysregulation in a Human Induced Pluripotent Stem Cell Model of PTPN11-Associated Juvenile Myelomonocytic Leukemia. Cell Rep. 2015; 13(3): 504-515. doi: 10.1016/j.celrep.2015.09.019.
61. Papapetrou EP. Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med. 2016; 22(12): 1392-1401. doi: 10.1038/nm.4238. Erratum in: Nat Med. 2019; 25(5): 861.
62. Sommer CA, Capilla A, Molina-Estevez FJ, Gianotti-Sommer A, Skvir N, Caballero I, et al. Modeling APC mutagenesis and familial adenomatous polyposis using human iPS cells. PLoS One. 2018; 13(7): e0200657. doi: 10.1371/journal.pone.0200657.
63. Zhou R, Xu A, Gingold J, Strong LC, Zhao R, Lee DF. Li-Fraumeni Syndrome Disease Model: A Platform to Develop Precision Cancer Therapy Targeting Oncogenic p53. Trends Pharmacol Sci. 2017; 38(10): 908-927. doi: 10.1016/j.tips.2017.07.004.
64. Curry EL, Moad M, Robson CN, Heer R. Using induced pluripotent stem cells as a tool for modelling carcinogenesis. World J Stem Cells. 2015; 7(2): 461-469. doi: 10.4252/wjsc.v7.i2.461.
65. Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov. 2015; 14(4): 248-260. doi: 10.1038/nrd4539.
66. van den Berg A, Mummery CL, Passier R, van der Meer AD. Personalised organs-on-chips: functional testing for precision medicine. Lab Chip. 2019; 19(2): 198-205. doi: 10.1039/c8lc00827b.
67. Atchison L, Zhang H, Cao K, Truskey GA. A Tissue Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome Using Human iPSC-derived Smooth Muscle Cells. Sci Rep. 2017; 7(1): 8168. doi: 10.1038/s41598-017-08632-4.
68. McKinney CE. Using induced pluripotent stem cells derived neurons to model brain diseases. Neural Regen Res. 2017; 12(7): 1062-1067. doi: 10.4103/1673-5374.211180.
69. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007; 318(5858): 1920-3. doi: 10.1126/science.1152092.
70. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A. 2008; 105(15): 5856-5861. doi: 10.1073/pnas.0801677105.
71. Scudellari M. How iPS cells changed the world. Nature. 2016; 534(7607): 310-312. doi: 10.1038/534310a.
72. Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov. 2015; 14(10): 681-692. doi: 10.1038/nrd4738.
73. Lu P, Woodruff G, Wang Y, Graham L, Hunt M, Wu D, et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron. 2014; 83(4): 789-796. doi: 10.1016/j.neuron.2014.07.014.
74. Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A, et al. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One. 2012; 7(12): e52787. doi: 10.1371/journal.pone.0052787.
75. Wang Q, Donelan W, Ye H, Jin Y, Lin Y, Wu X, et al. Real-time observation of pancreatic beta cell differentiation from human induced pluripotent stem cells. Am J Transl Res. 2019; 11(6): 3490-3504.
76. Shahjalal HM, Abdal Dayem A, Lim KM, Jeon TI, Cho SG. Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Res Ther. 2018; 9(1): 355. doi: 10.1186/s13287-018-1099-3.
77. Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature. 2017; 548(7669): 592-596. doi: 10.1038/nature23664.
78. Cao L, McDonnell A, Nitzsche A, Alexandrou A, Saintot PP, Loucif AJ, et al. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Sci Transl Med. 2016; 8(335): 335ra56. doi: 10.1126/scitranslmed.aad7653.
79. Tucker BA, Solivan-Timpe F, Roos BR, Anfinson KR, Robin AL, Wiley LA, et al. Duplication of TBK1 Stimulates Autophagy in iPSC-derived Retinal Cells from a Patient with Normal Tension Glaucoma. J Stem Cell Res Ther. 2014; 3(5): 161. doi: 10.4172/2157-7633.1000161.
80. Pomp O, Lam CS, Gan HT, Ramasamy S, Ahmed S. Modelling of Neurological Diseases Using Induced Pluripotent Stem Cells, Embryonic Stem Cells - Differentiation and Pluripotent Alternatives. Kallos MS. IntechOpen; 2011. doi: 10.5772/24489. Available from: https://www.intechopen.com/books/embryonic-stem-cells-differentiation-and-pluripotent-alternatives/modelling-of-neurological-diseases-using-induced-pluripotent-stem-cells
81. Ilic D, Devito L, Miere C, Codognotto S. Human embryonic and induced pluripotent stem cells in clinical trials. Br Med Bull. 2015; 116: 19-27. doi: 10.1093/bmb/ldv045.
82. Cyranoski D. 'Reprogrammed' stem cells approved to mend human hearts for the first time. Nature. 2018; 557(7707): 619-620. doi: 10.1038/d41586-018-05278-8.
83. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016; 17(3): 194-200. doi: 10.1038/nrm.2016.10.
84. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012; 11(2): 147-152. doi: 10.1016/j.stem.2012.07.014.
85. Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell. 2013; 13(4): 382-384. doi: 10.1016/j.stem.2013.08.003.
86. Neofytou E, O'Brien CG, Couture LA, Wu JC. Hurdles to clinical translation of human induced pluripotent stem cells. J Clin Invest. 2015; 125(7): 2551-2557. doi: 10.1172/JCI80575.
Objavljeno
2020/12/22
Rubrika
Pregledni rad