Financial Cost-Benefit Analysis of Investment Possibilities in District Heating System on Wood Residues
Abstract
The purpose of this research is to provide feasibility analysis of a long-term sustainable development concept for district heating based on wood residues. In this paper, the experimental study has been conducted starting from the data collected by field researches in municipality of Trstenik ( town in Serbia with district heating system currently based on heavy fuel oil and lignite). Using the method of Financial Cost-Benefit Analysis, this study evaluates financial efficiency of investment in district heating plant based on wood residues and energy savings in district heating system. Findings show that such investment could be profitable from the financial point of view: Net Present Value of investment is positive, Financial Rate of Return is high (30.69%), and the pay-back period is relatively favourable (7 years). Moreover, the presented SWOT indicates that there are realistic prospects of implementation of district heating based on wood residues. However, this does not mean everything will go smoothly and easily, keeping in mind a number of challenges that each new concept of district heating contains immanently. Nevertheless, the results of this research could provide useful inputs for the decision makers when selecting appropriate models for improving performance of municipal district heating systems.
References
Akhtari, S., Sowlati, T., & Day, K. (2014). The effects of variations in supply accessibility and amount on the economics of using regional forest biomass for generating district heat. Energy, 67, 631-640. doi:10.1016/j.energy.2014.01.092.
Alam, B., Pulkki, R., Shahi, C., & Upadhyay, T. (2012). Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario. Canada. Energies, 5, 5065-5085. doi:10.3390/en5125065.
Elbersen, B., Staritsky, I., Hengeveld, G., & Jeurissen, L. (2014). Outlook of spatial biomass value chains in EU28, Intelligent Enery Europe.
Chau, J., Sowlati, T., Sokhansanj, S., Preto, F., Melin, S., & Bi, X. (2009). Economic sensitivity of wood biomass utilization for greenhouse heating application. Appl. Energy, 86, 616-621. doi:10.1016/j.apenergy.2008.11.005.
Danon, G., Furtula, M., & Mandi, M. (2012). Possibilities of implementation of CHP (combined heat and power) in the wood industry in Serbia. Energy, 48, 169-176. doi:10.1016/j.energy.2012.02.073.
Directive 2009/28/EC of the European Parliament and of the Council. Off. J. Eur. Union, (2009). 140(16), 16-62.
Djukanovic, S. (2000). Društveni troškovi energetike zasnovane na eksploataciji uglja. Industrija, 26(1-4), 63-82.
Djukic, M., Jovanoski, I., Munitlak, O., Lazic, M., & Bodroza, D. (2016). Cost-benefit analysis of an infrastructure project and a cost-reflective tariff : A case study for investment in wastewater treatment plant in Serbia. Renew. Sustain. Energy Rev., 59, 1419-1425. doi:10.1016/j.rser.2016.01.050.
Djercan, B., Lukic, T., Bubalo-Zivkovic, M., Djurdjev, B., Stojisavljevic, R., & Pantelic, M. (2012). Possibility of efficient utilization of wood waste as a renewable energy resource in Serbia. Renew. Sustain. Energy Rev., 16, 1516-1527. doi:10.1016/j.rser.2011.10.017.
-Energy Saving Group, , & -USAID, (2009). Feasibility Study: Wood waste utilization in Serbia.
-European Climate Foundation. (2010). Biomass for heat and power.
-European Commission. (2014). Guide to Cost-Benefit Analysis of Investment Projects. doi:10.2776/97516.
-University of Belgrade, Faculty of Forestry. (2011). Biomass cost and availability study.
Glavonjic, B., Pisek, R., & Jovic, D. (2015). Spatial wood fuels production and consumption analysis, The work carried out in the framework of the FAO/Government of Serbia Project: "Wood energy for sustainable rural development" TCP/YUG/3201.
Groscurth, H., de Almeida, A., Bauen, A., Costa, F.B., & Ericson, S. (2000). Total costs and benefits of biomass in selected regions of the European Union. Energy, 25, 1081-1095.
Ilic, M. (2003). Energetski potencijal i karakteristike ostataka biomase i tehnologije za njenu pripremu i energetsko iskoriscenje u Srbiji.
-International Renewable Energy Agency. (2014). Global Bioenergy Supply and Demand Projections.
-International Reource Group, , & -USAID, (2012). Prefeasibility Assessment of Biomass District Heating Application in Serbia: Final Report.
Janevski, J.N., Stojanovic, B.V., Lakovic, M.S., Mirko, M., & Mitrovic, D.M. (2016). Wood biomass in Serbia: Resources and possibilities of use. Energy Sources, Part B Econ. Planning, Policy, 11, 732-738. doi:10.1080/15567249.2013.791897.
Johnston, C.M.T., & Van. Kooten, G.C. (2015). Economics of co-firing coal and biomass: An application to Western Canada. Energy Econ., 48, 7-17. doi:10.1016/j.eneco.2014.11.015.
Jovanovic, B., & Parovic, M. (2009). Stanje i razvoj biomase u Srbiji.
Law on Comunal Services. Off. Gaz. Repub. Serbia, (2011). [WWW Document], n.d., 88/2011 104/2016. Retrieved from http://www.paragraf.rs/propisi/zakon_o_komunalnim_delatnostima.html
Lourinho, G., & Brito, P. (2015). Assessment of biomass energy potential in a region of Portugal (Alto Alentejo). Energy, 81, 189-201. doi:10.1016/j.energy.2014.12.021.
Macfarlane, D.W. (2009). Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U. S. A. Biomass and Bioenergy, 33, 628-634. doi:10.1016/j.biombioe.2008.10.004.
Malico, I., Carrajola, J., Gomes, C.P., & Lima, J.C. (2016). Biomass residues for energy production and habitat preservation. Case study in a montado area in Southwestern Europe. J. Clean. Prod., 112, 3676-3683. doi:10.1016/j.jclepro.2015.07.131.
McKendry, P. (2002). Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol., 83(1), 37-46. pmid:12058829. doi:10.1016/S0960-8524(01)00118-3
Morris, G. (1999). The Value of the Benefits of U. S. Biomass Power.
Nishiguchi, S., & Tabata, T. (2016). Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets. Renew. Sustain. Energy Rev., 57, 1279-1286. doi:10.1016/j.rser.2015.12.213.
O'mahoney, A., Thorne, F., & Denny, E. (2013). A cost-benefit analysis of generating electricity from biomass. Energy Policy, 57, 347-354. doi:10.1016/j.enpol.2013.02.005.
Peric, M., Komatina, M., Bugarski, B., & Antonijevic, D. (2016). Best Practices of Biomass Energy Life Cycle Assessment and Possible Applications in Serbia. Croat. J. For. Eng., 37, 375-390.
Schmidt, J., Leduc, S., Dotzauer, E., Kindermann, G., & Schmid, E. (2010). Cost-effective CO 2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies. Appl. Energy, 87, 2128-2141. doi:10.1016/j.apenergy.2009.11.007.
-Statistical Office of the Republic of Serbia. (2015). Statistical Yearbook of the Republic of Serbia.
Stehlik, P. (2009). Contribution to advances in waste-to-energy technologies. J. Clean. Prod., 17, 919-931. doi:10.1016/j.jclepro.2009.02.011.
Steubing, B., Zah, R., & Ludwig, C. (2012). Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective. Environ. Sci. Technol., 46(1), 164-71. pmid:22091634
-Tekon-energy. (2011). Pre-feasibility study for application of advanced heat distribution and heat demand management in Bor, Trstenik, Priboj, Majdanpek, Zajecar, Novi Pazar, Nova Varos, Bajina Basta, Kosjeric, and Knjazevac and energy efficiency upgrade of respective district.
Tsai, W. (2012). Regulatory Promotion of Waste Wood Reused as an Energy Source and the Environmental Concerns about Ash Residue in the Industrial Sector of Taiwan. Energies, 5, 4390-4398. doi:10.3390/en5114390.
Vallios, I., Tsoutsos, T., & Papadakis, G. (2009). Design of biomass district heating systems. Biomass and Bioenergy, 33, 659-678. doi:10.1016/j.biombioe.2008.10.009.
Verani, S., Sperandio, G., Picchio, R., Marchi, E., & Costa, C. (2015). Sustainability Assessment of a Self-Consumption Wood-Energy Chain on Small Scale for Heat Generation in Central Italy. Energies, 8, 5182-5197. doi:10.3390/en8065182.
Vojinovic, Z. (2016). Renewable Energy Sources and the Possibility of Their Insurance. Econ. Anal., 49, 40-47.
Werner, S., & Erickson, K. (2015). Three decades of biomass use in Swedish district heating systems. In European Biomass Conference and Exhibition Proceedings. (pp. 519-528). Florence: ETA-Florence Renewable Energies.
Whalley, S., Klein, S.J.W., & Benjamin, J. (2017). Biomass and Bioenergy Economic analysis of woody biomass supply chain in Maine. Biomass and Bioenergy, 96, 38-49. doi:10.1016/j.biombioe.2016.10.015.