Effective parameters on the behavior of CFDST columns
Abstract
Concrete Filled Double Skin Steel Tubular (CFDST) columns could be considered as a new type of concrete filled steel tubular (CFT) columns. These columns are composed of two steel tubes in the concentric configurations with concrete between them. In the current study, finite element method was used to analyze the effects of load application, type of material, and geometric parameters of the specimens. It was found that the results obtained from finite element analysis show good agreement with available experimental results. Findings of the current study clearly indicate the high ductility and strength of CFDST columns under axial loading. The results show the significant impact of yield stress of steel section, compressive strength of concrete, thickness and diameter variations on the strength and ductility of CFDST columns.
References
Zhang, F., Wu, C., Zhao, X., Li, Z., Heidarpour, A., Wang, H., Numerical modeling of concrete-filled double-skin steel square tubular columns under blast loading, Journal of Performance of Constructed Facilities, 2015, 29(5), pp. 1 - 12.
Han L. H., Li Y. J., Liao F. Y., Concrete Filled Double Skin steel Tubular (CFDST) columns subjected to long-term sustained loading, Thin-walled structures, 2011, 49, pp. 1534-1543.
Li W., Ren Q. X., Han L. H., Behavior of tapered concrete-filled double skin steel tubular stub columns, Thin-walled structures, 2012, 57, pp. 37-48.
Han, L. H., Tao, Z., Huang, H., Zhao, X. L., Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns. Thin-walled structures, 2004, 42(9), pp. 1329-1355.
Tao Z., Han L. H., Zhao X. L., Behavior of concrete filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns, Journal of Constructional Steel Research, 2004, 60, pp. 1129–1158.
Uenaka, K., Kitoh, H., Sonoda, K., Concrete filled double skin circular stub columns under compression, Thin-walled structures, 2010, 48(1), pp. 19–24
Fan, J., Baig, M., Nie, J., Test and analysis on double-skin concrete filled tubular columns. Tubular Structures XII: Proceedings of Tubular Structures XII, Shanghai, China, 2008.
Han T. H., Stallings J. M., Kang Y. J., Nonlinear concrete model for double-skinned composite tubular columns, Construction and Building Materials, 2010, 24 (12): 2542–2553.
Han Lin Hai, Huang Hong, Zhao Xiao-Ling, Analytical behaviour of concrete-filled double skin steel tubular (CFDST) beam-columns under cyclic loading, Thin-Walled Structures, 2009, 47(6): 668–680.
Shah K. D., Vakil M. D., Patel M. N., Parametric study of concrete filled steel tube column, International Journal of Engineering Development and Research, 2014, 2(2), pp. 1678-1682.
Gupta P. K., Sarda S. M., Kumar M. S., Experimental and computational study of concrete filled steel tubular columns under axial loads, Journal of Constructional Steel Research, 2007, 63, pp. 182–193.
ANSYS R 10.0, Academic, Structural analysis guide, 2005.
Schneider S. P., Axially loaded concrete filled steel tubes, ASCE Journal of Structural Engineering, 1998, 124(10), pp. 1125-1138.
Mursi, M., Uy, B., Strength of concrete filled steel box columns incorporating interaction buckling, Journal of Structural Engineering, 2003, 129(5), pp. 626-639.
ACI 318 “Building code requirements for reinforced concrete”, American Concrete Institute, Detroit, Michigan, 1995.
AISC/LRFD, Manual of steel construction, Load and Resistance Factor Design, American Institute of Steel Construction, Part 4, Composite Columns, 2003.