MIXED FINITE ELEMENT FOR THE DYNAMIC ANALYSIS OF ORTHOTROPIC FLEXIBLE SHALLOW SHELLS
Abstract
A finite-element methodology for studying the forced oscillations of orthotropic flexible shallow shells relative to the initial deformed state defined on the basis of a geometrically nonlinear deformation theory is proposed. To derive the finite-element equations, the Galerkin method is used in combination with the mixed formulation of the problem. The final finite-element equations have a simple structure and numerical integration is not required for calculating the matrices and vectors of finite elements. The accuracy and convergence of the mixed finite element is analyzed. Based on the developed methodology, the influence of geometric nonlinearity on the process of shell oscillations is studied.
References
Stupishin L.U. & Nikitin K.E. (2014) Mixed finite element for geometrically nonlinear orthotropic shallow shells of revolution. Applied Mechanics and Materials. Vols. 919-921. рp. 1299-1302.
Stupishin L.U. & Nikitin K.E. (2014) Numerical research methodology of free oscillations of geometrically nonlinear shell using the mixed finite element method. Applied Mechanics and Materials. Vols. 580-583. pp. 3017-3020
.U. Stupishin, A.G. Kolesnikov Geometric Nonlinear Orthotropic Shallow Shells Investigation (Applied Mechanics and Materials Vols. 501-504 (2014) pp 766-769. Trans Tech Publications, Switzerland)
C.A.J. Fletcher (1984) Computational Galerkin methods. Springer-Verlag New York Inc.
G. Strang, G. Fix (2008) An Analysis of the Finite Element Method. Wellesley-Cambridge Press
Valishvili N.V. (1976) Metody rascheta obolochek vrashcheniya na ETsVM. Mashinostroenie Publ. Moscow
Volmir A.C. (1972) Nelineynaya dinamika plastinok i obolochek. Nauka Publ. Moscow