APPLICATION OF SINGULAR MATRIX BEAMS IN THE SYMMETRICAL PROBLEM OF DEFINITION OF EIGENVALUES

  • Elena Semenova Saint-Petersburg State University of Aerospace Instrumentation
  • Yan Ivakin Saint-Petersburg State University of Aerospace Instrumentation
  • Elena Frolova Saint-Petersburg State University of Aerospace Instrumentation
  • Alena Fomina Central Research Institute of Economy, Management and Information Systems Electronics
  • Maria Smirnova Saint-Petersburg State University of Aerospace Instrumentation
Keywords: Matrix Beam, Eigenvalue Problem, Spec-Central Equation, Characteristic Matrix, Congruence, Dichotomy, Calculator, matrix,

Abstract


The generalized problem of eigenvalue and vectors for singular matrix beams is central in the class of problems of rational construction of computed spectral models of complex modular systems. Solving this problem provides an opportunity to solve these problems, what determined the relevance of this work. The design calculations of complex modular-modular systems have a multivariate character for ensuring their optimal characteristics due to variation within the permissible limits of the elastic-inertial parameters. In the general case such calculations acquire the character of structural-parametric synthesis, when the varied space is supplemented by corrective dynamic devices. The purpose of this article was to provide basic methods for carrying out these calculations. The approach based on the singular decomposition of characteristic matrices was taken as the basis of the research in this paper. This allowed the authors to propose a set of methods for solving this problem, adaptively taking into account the specificity of the available input data. The theoretical significance of the work lies in the development of the modern mathematical and algorithmic apparatus of singular matrix beams, and practical in developing a scientific and methodological basis for solving a corresponding class of applied problems of the dynamics of mechanical and electromechanical systems, for equivalent mathematical and simulation modeling of systems of this class.

References

Kochura, A., Podkolzina, L., Ivakin, Ya., Nidziev, I. (2013). Singular matrix beams in the generalized symmetric eigenvalue problem. SPIIRAS Proceedings, vol. 26, no. 3, 253-276, DOI: http://dx.doi.org/10.15622/sp.26.18, from http://proceedings.spiiras.nw.ru/ojs/index.php/sp/article/view/1705, accessed on 2017-09-21.

Parlett, B. (1998). Symmetric eigenvalue problem. Society for Industrial and Applied Mathematics, Philadelphia, DOI: 10.1137/1.9781611971163

Yousef, S. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematic, Philadelphia, DOI: 10.1137/1.9780898718003.ch4, from http://inis.jinr.ru/sl/M_Mathematics/MN_Numerical%20methods/MNl_Numerical%20linear%20algebra/Saad%20Iterative.pdf, accessed on 2017-09-20.

Kochura, A., Podkolzina, L., Ivakin, Ya., Nidziev, I. (2014). Development of algorithm of the decision of systems linear equations with the varied parameters, using the matrix sparseness. SPIIRAS Proceedings, no. 2(33), 79-98, DOI: 10.15622/sp.33.5, from https://readera.ru/razrabotka-algoritma-reshenija-sistem-linejnyh-uravnenij-s-variruemymi-142176937-en, accessed on 2017-08-09.

Alaghband, G. (1999). Parallel sparse matrix solution and performance. Parallel Computing, vol. 21, no. 9, 1407-1430, DOI: 10.1016/0167-8191(95)00029-N

Blatov, I.A., Kitaeva, Ye.V. (2010). Numerical methods for sparse matrices. Samara State University Publ., Samara.

Borutzky, W. (2009). Bond graph methodology: Development and analysis of multidisciplinary dynamic system models. Springer, DOI: 10.1007/978-1-84882-882-7, from https://link.springer.com/content/pdf/bfm%3A978-1-84882-882-7%2F1.pdf, accessed on 2017-08-22.

Dehnavi, M.M., Fernandez, D.M., Giannacopoulos, D. (2010). Finite-element sparse matrix vector multiplication on graphic processing units. IEEE Transactions on Magnetics, vol. 46, no. 8, 2982-2985, DOI: 10.1109/TMAG.2010.2043511

Kron, G. (1972). The study of complex systems in parts – diakoptics. Nauka, Moscow.

Pissanetski, S. (1988). Sparse matrix technology. Mir, Moscow, from http://bookre.org/reader?file=1035085, accessed on 2017-07-05.

Sasaoka, T., Kawabata, H., Kitamura, T. (2007). A MATLAB-based code generator for parallel sparse matrix computations utilizing PSBLAS. IEICE Transactions on Information and Systems, vol. 90-D, no. 1, 2-12, DOI: 10.1093/ietisy/e90-1.1.2

Davis, T.A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied Mathematic, New York, DOI: 10.1111/j.1751-5823.2007.00015_14.x

Davis, T.A., Hu, Y. (2011). The university of Florida sparse matrix collection. ACM Transactions on Mathematical Software, vol. 38, no. 1, 1-28, DOI: 10.1145/2049662.2049663, from http://yifanhu.net/PUB/matrices.pdf, accessed on 2017-08-25.

Tran, T.M., Gruber, R., Appert, K., Wuthrich, S. (1996). A direct parallel sparse matrix solver. Computer Physics Communications, vol. 96, no. 2-3, 118-128, DOI: 10.1016/0010-4655(96)00007-0

Manakova, N.A., Vasiuchkova, K.V. (2017). Numerical investigation for the start control and final observation problem in model of an i-beam deformation. Journal of Computational and Engineering Mathematics. vol. 4, no. 2. 26-40, DOI: 10.14529/jcem170203. MSC 35Q99

Al-Isawi, J.K.T. (2015). On some properties of solutions to dzektser mathematical model in quasi-sobolev spaces. Journal of Computational and Engineering Mathematics. vol. 2, no. 4. 27-36. DOI: 10.14529/jcem150403. MSC 46A16, 47D03, 34D09

Ivakin, Ya., Potapychev, S.N., Ivakin, V. (2018). Verification of the hypotheses of a research on the basis of geochronological tracking. Historical Informatics. vol.1. 86-93 DOI: 10.7256/2585-7797.2018.1.25344. URL: http://e-notabene.ru/istinf/article_25344.html

Uteshev, A.U., Borovoj I.I. (2016) The solution of a problem of rational interpolation with use of gankelevy polynoms. Vestnik of Saint Petersburg University. Ser. 10, Applied Mathematics. Computer Science. Control Processes. vol. 4, 31-43 DOI: 10.21638/11701/ spbu10.2016.403

Aliseyko, A.N. (2017). Lyapunov's matrixes for a class of systems with an exponential kernel. Vestnik of Saint Petersburg University. Ser. 13, Applied Mathematics. Computer Science. Control Processes. vol. 3, 228-240 DOI: 10.21638/11701/spbu10.2017.301

Published
2018/06/15
Section
Original Scientific Paper