PRINCIPLES OF DESIGNING WELL SEPARATORS
Abstract
Vortex motion is effectively used in the development of wellbore filter designs. Further development of the principles of such design requires the development of some principles based on experimental observations and computer modeling. A constructive analogy between the wellbore filter and the Ranque vortex tube is shown. The results of experimental and theoretical studies of the vortex tube are applied as a basis for designing a well separator. Recommendations are formulated regarding the radius of the inner branch pipe of the downhole filter placed in the body. Approaches are discussed when choosing the length of the working section of the well separator, as well as the choice of the shape of the input cochlear, the size of the outlet diaphragm, and the shape of the sand suspension window.
References
Sh.A.Piralishvili, V.M.Polyaev, М.N.Sergeev, The vortex tube. Research, theory, concepts (Moscow: Energomash UNPC, 2000).
C.U.Lindestrom-Lang, An experimental study of the tangentional velocity profile on Ranque-Hilsh vortex tube, Riso Report, n 116. pp. 2-43, 1965.
J.C.Crittenden, R.R.Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous MWH's Water Treatment: Principles and Design: Third Edition (2012) available at: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118131473.
G.Z.Broun, A.Roshko On density effect and large structure in turbulent mixing lauers, I. Fluid Mech, vol. 64, pp. 778-816, 1974.
M. Kurosaka, Acoustik streminq in swirlinq flow and Ranque - Hilsh (Vortex tube) effect, I. Fluid Sci., vol.124, pp. 139-172, 1993.
K.Stephan, Investigation in a Vortex tube /K.Stephan [e.a.], Ibid, vol. 26, n. 3, pp. 341-348, 1983.
P.K.Singh, An experimental performance evaluation of vortex tube. I.E.(i) J.-MC.-January, vol.84, pp.149-153, 2004.
W.R.Michałek, J.G.M.Kuerten, J.C.H.Zeegers, R.Liew LES of the ranque-hilsch vortex tube, ERCOFTAC Series 20, pp. 679-686, 2015.
K.V.Lebedinskii, N.E.Kurnosov, A.A.Nikolotov, D.P.Alekseev Ionization of air in a ranque-hilsch vortex tube and the method of obtaining uni- and bipolar ionization, Journal of Engineering Physics and Thermophysics, vol. 88(6), pp. 1476-1482, 2015.
Y.Xue, M.Arjomandi, R.Kelso Experimental study of the flow structure in a counter flow Ranque-Hilsch vortex tube, International Journal of Heat and Mass Transfer, vol. 55 (21-22), pp. 5853-5860, 2012.
V.Alekhin, V.Bianco, A.Khait, A.Noskov Numerical investigation of a double-circuit Ranque-Hilsch vortex tube, International Journal of Thermal Sciences, vol. 89, pp. 272-282, 2015.
S.E.Rafiee, M.B.M.Sadeghiazad Three-dimensional computational prediction of vortex separation phenomenon inside the Ranque-Hilsch vortex tube, Aviation, vol. 20(1), pp. 21-31, 2016.
Y.Xue, M.Arjomandi, R.Kelso Experimental study of the thermal separation in a vortex tube, Experimental Thermal and Fluid Science, n. 46, pp. 175-182, 2013.
A.B.Feodorov, V.I.Afanasov, R.S.Miroshnikov, V.V. Bogachev Сoncept of modernization of input device of oil and gas separator, IPDME 2017 IOP Publishing IOP Conf. Serios: Eafth and Environmental Science, vol. 87, n. 082020, 2017.
V.I.Afanasov, V.V.Abramov, R.S.Miroshnikov, V.N.Gaevsky, S.P.Dunaeva Vortex tube in well separators // IOP Conference Series: Materials Science and Engineering, vol. 327(2), n. 022071, 2017.
V.V.Abramov, V.I.Afanasov, A.S.Lunev, A.M.Shakhmin, A.M.Fayziev, Patent RF 156936. Well Sand Separator. 2015
O.V.Kazantseva, Sh.A.Piralishvili, A.A.Fuzeeva Numerical simulation of swirling flows in vortex tubes, High Temperature, vol. 43(4), pp. 608-613, 2005.
M.Bovand, M.S.Valipour, S.Eiamsa-Ard, A. Tamayol Numerical analysis for curved vortex tube optimization, International Communications in Heat and Mass Transfer, vol. 50, pp. 98-107, 2014.
W.Frohlingsdorf, H.Under, Numerical investigation of the compressible flow and the energy separation in the Ranque – Hilsch vortex tube, Int. J. Heat and Mass Transfer, n 42, pp. 415-422, 1999.
F.Shults-Grunow, Die Wirkungweise des Ranque – wirbelrohres, Kaltetechnik, n. 2, pp. 273-284, 1950.
А.P.Merkulov, The vortex tube and its usage in technic. (Moscow: Mashnostroenie, pp. 8-16, 1969).
A.F.Gutsol, The Rank effect, Successes in Physical Sciences, vol. 167, n.6, pp. 665-687, 1997.
M.G.Ranque, Experiences sur la detente giratoire avec production simulanees d’un echappementd’airchaud et d’airfroid, Journal de Physique et le Radium (in French), Supplement, vol. 7, n. 4, pp. 112–114, 1933.
M.Sibulkin, Unsteady, Viscous, Circular Flow. Part 3: Application to the Ranque-Hilsch Vortex Tube, Journal of Fluid Mechanics, n. 12, pp.269-293, 1962.
K.Stephan, S.Lin, M.Durst, F.Huang, and D.Seher, A Similarity Relation for Energy Separation in a Vortex Tube, Int. J. Heat Mass Transfer, vol. 27, n. 6, 911–920, 1984.
Presentation of the LAKOS downhole filter: available at: https://www.youtube.com/watch?v=GWMFgiWSfE0
M.S.Iliessu, G.D.Ciosan, F.A.Avellan Analysis of the cavitating draft tube vortex in a Francis turbine using particle velocimetry measurements in two-phase flow, J. of Fluids Engineering, vol. 130, p.10, 2008.
R.I.Edling, B.I.Barfaield, C.I.Haan Vortex velocity production with emphasis directed toward vortex tube sediment trapdesign, Pap ASAE for Anny. Meet, n.11, Pap. 75- 2548, p. 25, 1975.
U.Vabistas Georgios, Tangentional velocity and static pressure distributions in vortex chambers, AIAA, vol. 25(1), n.8, pp. 174-286, 1987