ESTIMATION OF ROTATION PARAMETERS OF THREE-DIMENSIONAL IMAGES BY SPHERICAL HARMONICS ANALYSIS
Abstract
The article describes a method for estimating the rotational parameters of three-dimensional objects defined as a cloud of points in three-dimensional space, which is less complex compared to other methods and it can ensure a single-valued solution. The authors propose an approach of vector-field models to parametrize images of complex three-dimensional objects. The paper discusses the ways for calculating the expansion coefficients in the basis of spherical harmonics for images of three-dimensional point cloud objects. The authors offer an approach that provides the possibility of estimating the rotation parameters of three-dimensional objects from the values of the expansion coefficients in the basis of spherical harmonics.
References
/1/ Reich A M., Heipke C.. (2014) Global approach for image orientation using lie algebraic rotation averageing and convex l∞ minimisation// The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014 ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland. Pp. 265-272.
/2/ Jiang Jianju. (2014) Estimation on Three-dimensional Motion Parameters in Binocular Vision of Robot Tracking and Control System. The Open Automation and Control Systems Journal, 6, 1498-1504.
/3/ Liwicki, S., Pham, M-T., Zafeiriou, S., Pantic, M., Stenger, B. (2014) Full-Angle Quaternions for Robustly Matching Vectors of 3D Rotations // In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR. –Pp. 105-112. USA: IEEE Computer Society. DOI: 10.1109/CVPR.2014.21
/4/ Zhang J., Lv L., Shi X., Guo F., Zhang Y., Li H. (2013) Hough transform‐based approach for estimating 3D rotation angles of vertebrae from biplanar radiographs using GPU‐acceleration. International Journal of Imaging Systems and Technology, 23, 272–279.
/5/ Fredriksson J. (2016). Robust rotation and translation estimation in structure from motion// Mathematics Centre for Mathematical Sciences Lund University. Lund. - Pp. 1-137.
/6/ Larsson V., Fredriksson J., Toft C. and Kahl F. (2016) Outlier Rejection for Absolute Pose Estimation with Known Orientation. British Machine Vision Conference (BMVC).
/7/ Khafizov D.G. (2012) Solution to the problem of ambiguity at combination of spatial point images by using the principal component analysis. Herald of Computer and Information Technologies, 7, 11–15.
/8/ Gonzalez-Barbosa José-Joel, et al. (2015) Accurate 3D Reconstruction using a Turntable-based and Telecentric Vision. AUTOMATIKA, 56 (4), 508–521.
/9/ Li R., Chen Y., Zhou C., Zhang L. (2015) Three-dimensional pose estimation model for object with complex surface. Advances in Mechanical Engineering, 1-12. DOI: 10.1177/168781401456848
/10/ Rzazewska K., Luckner M. (2014) 3D model reconstruction and evaluation using a collection of points extracted from the series of photographs // Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Pp. 669–677
/11/ Sakai K., Yasumura Y. (2018) Three-dimensional shape reconstruction from a single image based on feature learning// 978-1-5386-2615-3/18/ 2018 IEEE
/12/ Lembit Valgma. (2016) 3D reconstruction using Kinect v2 camera. University of Tartu.- P.42.
F. J ̈aremo Lawin, “Depth data processing and 3D reconstruction using the Kinect v2,” Master’s thesis, Linkoping University, 2015
/1/ Buriy A.S., Mikhailov S.N. (1994). Metodi identifikatsii astroorientirov v zadachakh orientatsii I navigatsii kosmicheskogo apparata po izobrazheniyam zdezdnogo neba [Methods for identifying astro marks to navigate the spacecraft from images of the starry sky]. Zarubezhnaya radioelektronika [Foreign Radio Electronics], No7-8. - p. 44-52.
/15/ Furman Ya.A., Egoshina I.L., Eruslanov R.V. (2012) Matching Angular and Vector Descriptions of Three-Dimensional Group Point Objects. Avtometriya, 48(6), 3-17.
/16/ Egoshina I.L. (2013). Metodi, modeli I algoritmi obrabotki gruppovikh tochechnikh ob’ektov v usloviyakh apriornoi neopredelennosti uglovikh parametrov [Methods, models and algorithms for processing group point objects under conditions of a priori uncertainty of angular parameters]// Dissertation for the degree of Doctor of Technical Sciences in 05.13.01 – System Analysis Management and Information Processing (Technical and Medical Systems). 20 December 2013. Dissertations Board D 212.105.03.
/17/ Furman Ya.A., Eruslanov R.V., Egoshina I.L. (2013) Iterative algorithm for angular matching of group point objects with a priori uncertainty of parameters. Pattern Recognition and Image Analysis, 23(3), 381-388.
/18/ Furman Ya.A., Eruslanov R.V. (2011) Contour analysis of the task of the coordinate restoration of 3d object points by the series images of its shades. Nonlinear World, 8, 482 – 486.
/19/ Anisimov B.V. (1993) Raspoznanie i tsifrovaia obrabotka izobrazheniy [Recognition and digital image processing]/B.V. Anisimov, V.F.Kurganov, V.K.Zlobin// M.: Visshaya shkola [M.:Higher School]. - 295 p.
/1/ Ballard, D. (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2),111–122
/21/ Khoshelham, K. (2007) Extending general Hough transform to detect 3D object in laser range data ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 / K. Khoshelham.// -– Pp. 206-211.
/22/ Oliver, J. W. (2011) Demisting the Hough Tnsform for 3D Shape Recognition and registration / J. W. Oliver, M.-T. Pham // Proceedings of the British Machine Vision Conference. –Pp. 32.1-32.11.
/23/ Pham, M., Woodford, O.J., Perbet, F., Maki, A., Stenger, B., & Cipolla, R. (2011). A new distance for scale-invariant 3D shape recognition and registration. 2011 International Conference on Computer Vision, 145-152.
Chen S., Jiang H. Accelerating the hough transform with CUDA on graphics processing units //Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA). – The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2011. – С. 1.
/25/ Rozhentsov A.A., Baev A.A., Naumov A.S. (2010). Estimation of Parameters and Recognition of Images of Three-Dimensional Objects with Disordered Samples. Avtometriya 46(1), 57–69.
/26/ Huang H1, Shen L, Zhang R, Makedon F, Hettleman B, Pearlman J. (2005) Surface alignment of 3D spherical harmonic models: application to cardiac MRI analysis. Med Image Comput Comput Assist Interv, 8 (1), 67-74.
/27/ Ritchie David W., Kemp Graham J. L. (1999). Fast Computation, Rotation and Comparison of Low Resolution Spherical Harmonic Molecular Surfaces. Journal of Computational Chemistry, 20(4), 383-395.
/28/ Buhmann M. D. (2004) Radial Basis Functions: Theory and Implementations. Cambridge University, 259 p.
/29/ Titov V.S., Rozhentsov A.A., Khafizov R.G. (2014) Modern approaches to representation and processing of three-dimensional object images. Vestnik of Mari State Technical University. Series «Radio Engineering and Infocommunication Systems», 2, 44-54.
/30/ Brechbühler Ch., Gerig G., Kübler O. (1995) Parametrization of Closed Surfaces for 3-D Shape Description. Computer Vision and Image Understanding. 61(2), 154–170.
/31/ Tikhonov A.N., Arsent’ev V.Ya. (1979) Metodi resheniya nekorrektnikh zadach [Methods for solving ill-posed problems]/ A.N. Tokhonov, V.Ya. Arsent’ev // M.: Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literature [M.:Schience. Main Editorial Board of Physics-Mathematics Literature]. 288p.