REVIEW OF THE BIG DATA TECHNOLOGY USE IN THE MEDICAL PROGNOSIS

  • Igor I. Koltunov Moscow Polytechnic University
  • Anton V. Panfilov Tradition group LTD
  • Ivan A. Poselsky Moscow Polytechnic University
  • Nikolay N. Chubukov Tradition group LTD
  • Stanislav S. Matkov Tradition group LTD
Keywords: Biosensor, Biosensor platform, Diagnostic informativeness, Diagnostic prognosis, Non–invasive monitoring, Nosology, Cloud technologies, Telemedicine, Health,

Abstract


The article shows the main aspects and problematics of elaborating effective models of current diagnostics and diagnostic prognosis of the patient’s health status, who is an object of non–invasive monitoring, based on the current analysis of characteristic combinations of his/her vital signs on nosology and the results of long–term collecting, processing and semantic classificating the biomedical data.

References

Drowning in Big Data? Reducing Information Technology Complexities and Costs for Healthcare Organizations. (2012). Frost & Sullivan, from https://www.emc.com/collateral/analyst–reports/frost–sullivan–reducing–information–technology–complexities–ar.pdf, accessed on 2018-09-20.

Song, Z., Liu, C.H., Wu, J., Ma, J., Wang, W. (2014). QoI–aware multi–task–oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, vol. 63, no. 9, 4618-4632, DOI: 10.1109/TVT.2014.2317701

Banaee, H., Ahmed, M.U., Loutfi, A. (2013). Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors, vol. 13, no. 12, 17472-17500, DOI: 10.3390/s131217472

Rathi, M., Narasimhan, B. (2017). Data Mining, Soft Computing, Machine Learning and BioInspired Computing for Heart Disease Classification/Prediction – A Review, DOI: 10.23956/ijarcsse/V7I4/0156

Poon, C.C., Lo, B.P., Yuce, M.R., Alomainy, A., Hao, Y. (2015). Body sensor networks: In the era of big data and beyond. IEEE Reviews in Biomedical Engineering, vol. 8, 4-16, DOI: 10.1109/RBME.2015.2427254

Raghupathi, W., Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential. Health Information Science and Systems, no. 2, 3, DOI: 10.1186/2047-2501-2-3

Yicuan, W., Terry, L., Terry, K., Byrd, A. (2015). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, vol. 126, 3-13, DOI: https://doi.org/10.1016/j.techfore.2015.12.019

Zeinab Arabasadi, Roohallah Alizadehsani, Mohamad Roshanzamir, Hossein Moosaei. (2017). Computer aided decision making for heart disease detection using hybrid neural network–Genetic algorithm. Computer Methods and Programs in Biomedicine, vol. 141, 19-26, DOI: 10.1016/j.cmpb.2017.01.004

Blake, C., Merz, C. (1998). UCI Repository of Machine Learning Databases. University of California, Department of Information and Computer Science, Irvine.

Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M. (2017). Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, vol. 415-416, 190-198, DOI: https://doi.org/10.1016/j.ins.2017.06.027

Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C.H., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, vol. 101, no. 23, e215-e220, DOI: 10.1161/01.CIR.101.23.e215

Noorian, A., Dabanloo, N.J., Parvaneh, S. (2014). Detection and localization of myocardial infarction using K–nearest neighbor classifier. Conference “Computing in Cardiology 2014”.

Sakr, S., Elshawi, R., Ahmed, A., Qureshi, W.T., Brawner, C., Keteyian, S., Blaha, M.J., Al-Mallah, M.H. (2017). Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. PLoS ONE, vol. 13, no. 4, e0195344, DOI: https://doi.org/10.1371/journal.pone.0195344

Al–Mallah, M.H., Keteyian, S.J., Brawner, C.A., Whelton, S., Blaha, M.J. (2014). Rationale and design of the Henry Ford Exercise Testing Project (the FIT project). Clinical Cardiology, vol. 37, no. 8, 456-461, DOI: https://doi.org/10. 1002/clc.22302

Kurgan, L., Cios, K.J. (2001). Discretization algorithm that uses class-attribute interdependence maximization. Proceedings of the 2001 International Conference on Artificial Intelligence, p. 980-987.

Kent, J.T. (1983). Information gain and a general measure of correlation. Biometrika, vol. 70, no. 1, 163-173, DOI: https://doi.org/10.1093/biomet/70.1.163

Guyon, I., Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, no. 3, 1157-1182, DOI: 10.1162/153244303322753616

Beltrame, T., Amelard, R., Wong, A., Hughson, R.L. (2017). Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living. Scientific Reports, no. 7, 45738, DOI: 10.1038/srep45738

Webster, E., Sukaviriya, N., Chang, H.-Y., Kozloski, J. (2017). Predicting cognitive states from wearable recordings of autonomic function. IBM Journal of Research and Development, vol. 61, no. 2/3, 2:1-2:11, DOI: 10.1147/JRD.2017.2648698

Apache Hadoop, from http://hadoop.apache.org/, accessed on 2018-09-21.

Chen, M., Ma, Y., Song, J., Lai, C.-F., Hu, B. (2016). Smart clothing: Connecting human with clouds and big data for sustainable health monitoring. Mobile Networks and Applications, vol. 21, no. 5, 825-845, DOI: https://doi.org/10.1007/s11036–016–0745–1

Published
2018/12/15
Section
Original Scientific Paper