ASSESSMENT OF THE MOMENT OF STABILITY WHEN PROVIDING FRONTAL STABILITY OF THE EXOSKELETON

  • Yuri Andrianov Volga State University of Technology
  • Pyotr Fishchenko Volga State University of Technology
  • Alexander Kapustin Volga State University of Technology
Keywords: the moment of stability of the exoskeleton, supporting the balance of the exoskeleton, the balance of the exoskeleton, frontal stability of the exoskeleton, medical exoskeleton,

Abstract


In medical exoskeletons, it is necessary to support a stable vertical position of a person. Based on the use of mathematical modeling and theoretical mechanics methods, estimation of the moment of stability is performed while ensuring the frontal (lateral) stability of a person in a medical exoskeleton. This will allow to receive the maximum allowable safe speed, eliminating the fall in the frontal plane. Recommendations for providing frontal (lateral) stability are given.

References

Kapustin, A.V., Loskutov, Yu.V., Kudryavtsev, I.A., & Belogusev, V.N., (2018). Methods to realize stable walking of rehabilitation exoskeleton. Vestnik of the Volga State University of Technology. Ser.: Materials. Constructions. Technologies, 3, 44-54.

Formal’sky, А.М., (2014). Motion control of unstable objects. Moscow: PHYSMATLIT.

Zhang, T., Tran, M., & Huang, H. (2018). Design and Experimental Verification of Hip Exoskeleton with Balance Capacities for Walking Assistance. IEEE/ASME Transactions on Mechatronics, 23(1), 274-285. doi:10.1109/TMECH.2018.2790358

Martínez, A., Lawson, B., & Goldfarb, M. (2018). A Controller for Guiding Leg Movement During Overground Walking With a Lower Limb Exoskeleton. IEEE Transactions on Robotics, 34(1), 183-193. doi:10.1109/TRO.2017.2768035

Andrianov, Yu.S., Kapustin, A.V., Egorov, A.V., & Fishchenko, P.A., (2018). The effect of a sequence of conditions on the transformation of the state of the system. Innovations in life, 2, 69-83.

Kapustin, A.V., Loskutov, Yu.V., Skvortsov, D.V., Nasybullin, A.R., Klyuzhev, K.S., & Kudryavtsev, A.I., (2018). Circuitry of the system for controlling a rehabilitation exoskeleton for medicinal purposes. Vestnik of the Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems, 2, 77-86.

Loskutov, Y.V., Kapustin, A.V., Klyuzhev, K.S., Kudryavtsev, A.I., Loskutov, M.Y., & Fadeev, A.M. (2017). Computer simulation of regular walking based on the kinematic analysis of movements and the synthesis of exoskeleton control algorithms. Vestnik of the Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems, 3, 47-60.

Andrianov, D.Yu., & Fishchenko, P.A., (2018). Calculation of the volume of the body by the method of splitting into elementary pyramids. U: Creativity of the young to scientific progress, 2018, Yoshkar-Ola. VSUT.53-55.

Andrianov, D.Yu., Kudryavtsev, A.I., & Fishchenko, P.A., (2018). Estimation of the coordinates of element barycenter of rotation gear. U: Proceedings of the Volga State University of Technology. Ser.: Technological, 2018. Yoshkar-Ola: VSUT.52-56.

Jatsun, S.F., Savin, S.I., Jatsun, A.S., & Malchikov, A.V., (2016). Study of controlled frontal plane motion of an exoskeleton in the vertical balance recovery regime. Extreme robotics, 1, 236-245.

Barbareschi, G., Richards, R., Thornton, M., Carlson, T., & Holloway, C. (2015). Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human. U: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 6728-6731. doi:10.1109/EMBC.2015.7319937

Hof A.L., Gazendam M.G.J., & Sinke W.E., (2005). The condition for dynamic stability. Journal of Biomechanics, 38(1), 1-8.

Published
2019/12/15
Section
Original Scientific Paper