GAP ANALYSIS AND RISK OCCURENCE ON THE EXAMPLE OF PRESSURE TRANSMITTER`S PRODUCTION PROCESSES
Abstract
Gap analysis represents a tool for raising the level of performances of products, processes and enterprise organization which is rarely used in risk management. This paper proposes the joint application of Gap and Pareto analysis, in aim to mitigate possible risks in production processes. It is based on the facts that key points in the production process indicate some serious oversights (gaps), characterized as errors, which can grow into risky elements that disturb the manufacturing process and final transmitter assembly.
In this paper, finalizing and assembling pressure transmitter elements (modules), created by a domestic manufacturer, served as an example for the Gap analysis. Each electronic transmitter is consisted of three modules: measurement cell, mechanical coupling fixture and enclosure containing the electronics and the terminal block box. Through the implementation and assembly of these modules errors (or elements of potential risks) have been identified. Later on, using the Pareto chart, it has been seen that 80% of errors made during the transmitter manufacturing process have occured while implementing the first and the third transmitter module. Also, by analyzing the collected gaps, it has been concluded that the critical ones happen while using the existing technology and engaging workforce.
In order to eliminate the above-mentioned errors, this paper decidedly presents the Gap analysis steps which should be followed, so the transmitter manufacturing process would be improved in terms of quality. Similar methodology could be applied to other products and processes.
References
Milazzo, M. F. (2016). On the importance of managerial and organisational variables in the quantitative risk assessment. Journal of Applied Engineering Science, vol. 14, no. 1, 54-60, DOI: 10.5937/jaes14-9842
Stanisavljev, S., Ćoćkalo, D., Đorđević, D., Minovski, R. (2013). The production cycle time in serial production: Reduction of the duration in metal processing industry case. Journal of Applied Engineering Science, vol. 11, no. 3, 115-122, DOI: 10.5937/jaes11-4052
Conrow, E.H., & Shishido, P.S. (1997). Implementing risk management on software intensive projects. IEEE Software, 14(3), 83-89. doi:10.1109/52.589242
Miller, R., & Lessard, D. (2001). Understanding and managing risks in large engineering projects. International Journal of Project Management, 19(8), 437-443. doi:10.1016/s0263-7863(01)00045-x
Michalska, J. (2006). Quality costs in the production process. Journal of Achievements in Materials and Manufacturing Engineering, vol. 17, no. 1-2, 425-428.
Sousa, S., Nunes, E., & Lopes, I. (2015). Measuring and managing operational risk in industrial processes. FME Transaction, 43(4), 295-302. doi:10.5937/fmet1504295s
Stamenković, D., Popović, V., Spasojević-Brkić, V., Radivojević, J. (2011). Combination free replacement and pro-rata warranty policy optimization model. Journal of Applied Engineering Science, vol. 9, no. 4, 457-464, DOI: 10.5937/jaes9-1202
Tilley, P.A., Mcfallen, S.L., & Tucker, S.N. (2000). Design and Documentation Quality and Its Impact on the Construction Process. AISC - IEAust Special Issue Steel Construction, vol. 34, no. 4, 7-14.
Kliem, R.L. (2000). Risk Management for Business Process Reengineering Projects. Information Systems Management, 17(4), 66-68. doi:10.1201/1078/43193.17.4.20000901/31256.12
Williams, T. (1995). A classified bibliography of recent research relating to project risk management. European Journal of Operational Research, 85(1), 18-38. doi:10.1016/0377-2217(93)e0363-3
Polk, R., Plank, R.E., & Reid, D.A. (1996). Technical risk and new product success: An empirical test in high technology business markets. Industrial Marketing Management, 25(6), 531-543. doi:10.1016/s0019-8501(96)00071-5
Awasthi, M. K., Sarsaiya, S., Wang, Q., Wang, M., Chen, H., Ren, X., Kumar, S., & Zhang, Z. (2018). Mitigation of Global Warming Potential for Cleaner Composting, Biosynthetic Technology and Environmental Challenges, Springer, Singapore, p. 271-305., DOI: 10.1007/978-981-10-7434-9_16
Vukelić, Đ., Budak, I., Tadić, B., Lužanin, O., Hadžistević, M., & Krizan, P. (2011). Automated generation of workpiece locating scheme in fixture design. Journal of Applied Engineering Science, vol. 9, no. 3, 383-392.
Davis, R., Misra, S., & Van Auken, S. (2002). A gap analysis approach to marketing curriculum assessment: A study of skills and knowledge. Journal of Marketing Education, vol. 24, no. 3, 218-224, DOI: 10.1177/0273475302238044
Tsai, W. H., Hsu, W., & Chou, W. C. (2011). A gap analysis model for improving airport service quality. Total Quality Management & Business Excellence, vol. 22, no. 10, 1025-1040, DOI: 10.1080/14783363.2011.611326
Marra, M., Di Biccari, C., Lazoi, M., & Corallo, A. (2018). A Gap Analysis Methodology for Product Lifecycle Management Assessment. IEEE Transactions on Engineering Management, vol. 65, no. 1, 155-167, DOI: 10.1109/TEM.2017.2762401
Mogos, M. F., Fredriksson, A., & Alfnes, E. (2019). A production transfer procedure based on risk management principles. Journal of Global Operations and Strategic Sourcing, vol. 12, no. 1, 103-150, DOI: 10.1108/JGOSS-01-2018-0001
Garza-Reyes, J. A., Romero, J. T., Govindan, K., Cherrafi, A., & Ramanathan, U. (2018). A PDCA-based approach to Environmental Value Stream Mapping (E-VSM). Journal of Cleaner Production, vol. 180, 335-348, DOI: 10.1016/j.jclepro.2018.01.121
Cheng, T. C. E., & Musaphir, H. (1996). Theory and practice of manufacturing strategy. International Journal of Production Research, vol. 34, no. 5, 1243-1259, DOI: 10.1080/00207549608904963
Haron, N. Z., & Kairudin, F. L. M. (2012). The application of quality function deployment (QFD) in the design phase of industrialized building system (IBS) apartment construction project. European International Journal of Science and Technology, vol. 1, no. 3, 56-66
Govindaluri, S. M., & Cho, B. R. (2007). Robust design modeling with correlated quality characteristics using a multicriteria decision framework. The International Journal of Advanced Manufacturing Technology, vol. 32, no. 5, 423-433, DOI: 10.1007/s00170-005-0349-6
Sokovic, M., Pavletic, D., & Fakin, S. (2005). Application of Six Sigma methodology for process design. Journal of Materials Processing Technology, vol. 162, 777-783, DOI: 10.1016/j.jmatprotec.2005.02.231
Gershenson, J. K., Prasad, G. J., & Zhang, Y. (2004). Product modularity: measures and design methods. Journal of engineering Design, vol. 15, no. 1, 33-51, DOI: 10.1080/0954482032000101731
ElMaraghy, W., ElMaraghy, H., Tomiyama, T., & Monostori, L. (2012). Complexity in engineering design and manufacturing. CIRP Annals-Manufacturing Technology, vol. 61, no 2, 793-814, DOI: 10.1016/j.cirp.2012.05.001
Baldwin, C. Y., & Clark, K. B. (2000). Design rules: The power of modularity. MIT press.DOI: 10.7551/mitpress/2366.001.0001
Hölttä-Otto, K., & De Weck, O. (2007). Degree of modularity in engineering systems and products with technical and business constraints. Concurrent Engineering, vol. 15, no. 2, 113-126, DOI: 10.1177/1063293X07078931
Engel, A., Browning, T. R., & Reich, Y. (2017). Designing products for adaptability: insights from four industrial cases. Decision Sciences, vol. 48, no. 5, 875-917, DOI: 10.1111/deci.12254
Sinha, K. & Suh, E. S. (2018). Pareto-optimization of complex system architecture for structural complexity and modularity. Research in Engineering Design, vol. 29, no. 1, 123-141, DOI: 10.1007/s00163-017-0260-9
Rechtin, E. & Maier, M. W. (2010). The art of systems architecting. CRC press.
Branscomb, L. M. & Auerswald, P. E. (2003). Taking Technical Risks: How Innovators, Managers, and Investors Manage Risk in High-Tech Innovations. MIT Press.