COMPARISON OF MICROWAVE AND CONVENTIONAL EXTRACTION METHODS FOR NATURAL DYES IN WOOD WASTE OF MAHOGANY (SWIETENIA MAHAGONI)
Abstract
Natural dyes from mahogany are usually obtained by conventional extraction. This extraction process requires a large solvent, a long duration of the process so that the energy requirements are also higher. Therefore, the use of "green techniques" to extract natural dyes with a minimum of energy and solvent should be considered. One extraction method that has been developed is the microwave-assisted extraction (MAE) method. In this work, the effects of microwave power, material to solvent ratio, and the heating time on the extraction results and the pigment component of the extract were examined. A comparison of the time required for reflux extraction and Soxhlet was also made. In microwave extraction, the highest yield was obtained at optimum extraction conditions such as microwave power of 600 W, the ratio of material to solvent of 0.02 g/mL, extraction time of 30 min. While for reflux and soxhlet extraction, the extraction time needed to obtain optimum yield was 120 min and 720 min, respectively. Identification of compound components by the phytochemical test. Descriptions of the effects of microwave and conventional extraction are shown by damage to the surface structure of solid materials using Scanning Electron Microscopy (SEM).
References
Gala, S., Sumarno, S., & Mahfud, M. Microwave-assisted extraction of natural dyes from Coleus atropurpureus leaves: The effect of solvent. In A. C. Kumoro, H. Hadiyanto, S. A. Roces, L. Yung, X. Rong, A. W. Lothongkum, … P. T. S. Nam (Eds.), MATEC Web of Conferences (Vol. 156, p. 06011). Semarang (2018). doi:10.1051/matecconf/201815606011
Febriana, I. D., Kusuma, H. S., Gala, S., & Mahfud, M. The effect of temperature on extraction of Swietenia mahagoni by ultrasound–assisted extraction (UAE) method. ASEAN Journal of Chemical Engineering, 16(2), 44–49 (2016).
Ali, S., Hussain, T., & Nawaz, R. Optimization of alkaline extraction of natural dye from Henna leaves and its dyeing on cotton by exhaust method. Journal of Cleaner Production, 17(1), 61–66 (2009). doi:10.1016/J.JCLEPRO.2008.03.002
Leitner, P., Fitz-Binder, C., Mahmud-Ali, A., & Bechtold, T. Production of a concentrated natural dye from Canadian Goldenrod (Solidago canadensis) extracts. Dyes and Pigments, 93(1–3), 1416–1421 (2012). doi:10.1016/j.dyepig.2011.10.008
Sinha, K., Saha, P. Das, & Datta, S. Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. Industrial Crops and Products, 37(1), 408–414 (2012). doi:10.1016/j.indcrop.2011.12.032
Selvam, R. M., Athinarayanan, G., Nanthini, A. U. R., Singh, A. J. A. R., Kalirajan, K., & Selvakumar, P. M. Extraction of natural dyes from Curcuma longa, Trigonella foenum graecum and Nerium oleander, plants and their application in antimicrobial fabric. Industrial Crops and Products, 70, 84–90 (2015). doi:10.1016/j.indcrop.2015.03.008
Jusoh, Y. M. M., Idris, A. A., Khairuddin, N., Zaidel, D. N. A., Hashim, Z., Mahmood, N. A. N., … Muhamad, I. I. Effect of solvent pH, microwave power and extraction time on microwave-assisted extraction of Hibiscus rosa-sinensis. Chemical Engineering Transactions, 63, 541–546 (2018). doi:10.3303/CET1863091
Amarasuriyan, C., Raju, K., & Raja, A. Phyto-Chemical Studies and In vitro Free Radical Scavenging Activity of Swietenia mahagoni (L.) Jacq. Indian Journal of Natural Sciences, 4(23), 1513–1564 (2014).
Umale, S., & Mahanwar, P. A. Extraction of colorant from leaves of Terminalia catappa using non conventional technique. International Journal of Basic and Applied Sciences, 12(1), 79–88 (2012).
Sinha, K., Chowdhury, S., Saha, P. Das, & Datta, S. Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response surface methodology (RSM) and artificial neural network (ANN). Industrial Crops and Products, 41(1), 165–171 (2013). doi:10.1016/j.indcrop.2012.04.004
Karabegović, I. T., Stojičević, S. S., Veličković, D. T., Todorović, Z. B., Nikolić, N. Č., & Lazić, M. L. The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops and Products, 54, 142–148 (2014). doi:10.1016/j.indcrop.2013.12.047
Barrera Vázquez, M. F., Comini, L. R., Milanesio, J. M., Núñez Montoya, S. C., Cabrera, J. L., Bottini, S., & Martini, R. E. Pressurized hot water extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). Journal of Supercritical Fluids, 101, 170–175 (2015). doi:10.1016/j.supflu.2015.02.029
Qadariyah, L., Gala, S., Widoretno, D. R., Kunhermanti, D., Bhuana, D. S., Sumarno, S., & Mahfud, M. Jackfruit (Artocarpus heterophyllus lamk) wood waste as a textile natural dye by micowave-assisted extraction method. In F. Taufany, W. Widiyastuti, & S. Nurkhamidah (Eds.), AIP Conference Proceedings (Vol. 1840, p. 100007). Surabaya (2017). doi:10.1063/1.4982324
Kamaruddin, M. J., Hamid, S. R. A., Othman, S. I. A., Alam, M. N. H. Z., Zaini, M. A. A., & Zakaria, Z. Y. The effects of conventional and microwave heating techniques on extraction yield of orthosiphon stamineus leaves. Chemical Engineering Transactions, 63, 601–606 (2018). doi:10.3303/CET1863101
Kusuma, H. S., Altway, A., & Mahfud, M. Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. Journal of Industrial and Engineering Chemistry, 58, 343–348 (2018). doi:10.1016/j.jiec.2017.09.047
Mahfud, M., Putri, D. K. Y., Dewi, I. E. P., & Kusuma, H. S. Extraction of essential oil from cananga (Cananga odorata) using solvent-free microwave extraction: A preliminary study. Rasayan Journal of Chemistry, 10(1), 86–91 (2017). doi:10.7324/RJC.2017.1011562
Kusuma, H. S., & Mahfud, M. Comparison of kinetic models of oil extraction from sandalwood by microwave-assisted hydrodistillation. International Food Research Journal, 24(4), 1697–1702 (2017).
Harborne, J. B. Phytochemical Methods - A Guide to Modern Techniques of Plant Analysis (Second Edi.). New York, NY: Chapman and Hall (1984). doi:10.1007/978-94-009-5570-7
Mandal, V., Mohan, Y., & Hemalatha, S. Microwave assisted extraction - An innovative and promising extraction tool for medicinal plant research. Pharmacognosy Review, 1(1), 7–18 (2007).
Liu, J.-L., Li, L.-Y., & He, G.-H. Optimization of microwave-assisted extraction conditions for five major bioactive compounds from Flos Sophorae Immaturus (Cultivars of Sophora japonica L.) using response surface methodology. Molecules, 21(3), 1–27 (2016). doi:10.3390/molecules21030296
Jeyaratnam, N., Nour, A. H., & Akindoyo, J. O. Comparative study between hydrodistillation and microwave-assisted hydrodistillation for extraction of Cinnamomum cassia oil. ARPN Journal of Engineering and Applied Sciences, 11(4), 2647–2652 (2016).
Metaxas, A. C. Foundation and Electroheat: A Unified Approach. New York, NY: John Wiley & Sons Ltd (1996).
Alara, O. R., Abdurahman, N. H., Mudalip, S. K. A., & Olalere, O. A. Effects of microwave-assisted extraction parameters on the recovery yield and total phenolic content of Vernonia amygdalina leaf extracts with different methods of drying. Jundishapur Journal of Natural Pharmaceutical Products, 14(1), 1–11 (2019). doi:10.5812/jjnpp.57620
Jin, Z.-X., Wang, B.-Q., & Chen, Z.-J. Microwave-assisted extraction of tannins from Chinese herb Agrimonia pilosa Ledeb. Journal of Medicinal Plants Research, 4(21), 2229–2234 (2010). doi:10.5897/JMPR10.378
Norfaezah, A., Zainab, H., & Othman, H. Comparative study between microwave assisted extraction and Soxhlet extraction techniques for bio-oil extraction from Jatropha curcas. Journal of Engineering Science and Technology, 10(Special Issue 8), 9–16 (2015).