CHARACTERISTIC LIGNOCELLULOSE OF SAGO SOLID WASTE FOR BIOGAS PRODUCTION

  • Nururrahmah - Hammado Diponegoro University
  • Sudarno - Utomo Diponegoro University
  • Budiyono - Budiyono Diponegoro University

Abstract


Biogas is an alternative energy that can be produced from various biomass, sago solid waste is one of them. Sago solid waste was obtained from processing sago stems into sago starch. Sago solid waste should be treated to separate lignocellulose that can be used as raw material for biogas production. In this study, pre-treatment was done to anaerobic fermentation. Physical pre-treatment was done by milling the biomass into small pieces. Chemical pre-treatment was done by using NaOH solvent, and biological pre-treatment used a microbial consortium. Characterization of pretreated sago solid waste was analyzed with Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-Ray (EDX) for inorganic element composition analysis. The functional group changes were characterized by Fourier Transform Infrared (FTIR) and lignocellulosic composition was analyzed by the Van Soest method. The analysis of results showed that chemical and biological pretreatment significantly degradation lignocellulose than other methods based on morphologies of sago hampas granules. The biological pre-treatment was capable of degraded lignin up to 3.47% and hemicellulose 8.01%.

References

Perkebunan, D.J. (2016). Statistik perkebunan Indonesia 2015-2017. Direktorat Jendral Perkebunan Kementerian Pertanian, Jakarta.

Nggobe, M. (2005). The utilizing by product of sago as feed for poultry in Papua. Eight International Sago Symposium in Jayapura, Indonesia. Japan Society for the Promotion Science.

Karim, A., Tie, A., Manan, D., Zaidul, I. (2008). Starch from the sago (Metroxylon sagu) palm tree properties, prospects, and challenges as a new industrial source for food and other uses. Comprehensive Reviews in Food Science and Food Safety, vol. 7, no.3, 215-228, DOI: 10.1111/j.1541-4337.2008.00042.x.

Greenhill, A.R. (2006). Food safety and security of sago starch in rural Papua New Guinea, James Cook University, from http://researchonline.jcu.edu.au/2023/2.

Awg-Adeni, D., Abd-Aziz, S., Bujang, K., Hassan, M. (2010). Bioconversion of Sago Residue into Value Added Products. African Journal of Biotechnology, vol. 9, no.14, 2016-2021.

Abd-Aziz, S. (2002). Sago starch and its utilisation. Journal of Bioscience and Bioengineering, vol. 94, no. 6, 526-529, DOI: 10.1016/S1389-1723(02)80190-6.

Nururrahmah, H., Sudarno, U. (2018). Physicochemical characteristic of sago solid waste and sago wastewater in Luwu Regency. E3S Web of Conferences. EDP Sciences. vol. 73, p. 07007, DOI: 10.1051/e3sconf/20187307007.

Lim, J.K. (2006). Preparation and characterization of carboxymethyl sago waste and its hydrogel, Universiti Putra Malaysia.

Linggang, S., Phang, L., Wasoh, M., Abd-Aziz, S. (2012). Sago pith residue as an alternative cheap substrate for fermentable sugars production. Applied Biochemistry and Biotechnology, vol. 167, no. 1, 122-131, DOI: 10.1007/s12010-012-9592-0.

Utami, A.S., Sunarti, T.C., Isono, N., Hisamatsu, M., Ehara, H. (2014). Preparation of biodegradable foam from sago residue. Sago Palm, vol. 22, 1-5.

Dhiputra, K., Made, I., Jonatan Numberi, J., Ekayuliana, A. (2015). Pemanfaatan ampas ela sagu sebagai bioetanol untuk kebutuhan bahan bakar rumah tangga di Provinsi Papua. Seminar Nasional Tahunan Teknik Mesin Indonesia XIV.

Karthika, C., Vennilamani, N., Pattabhi, S., Sekar, M. (2010). Utilization of sago waste as an adsorbent for the removal of Pb (II) from aqueous solution: kinetic and isotherm studies. International Journal of Engineering Science and Technology, vol. 2, no. 6, 1867-1879, DOI: 10.1.1.168.471.

Sangaji, I. (2009). Mengoptimalkan pemanfaatan ampas sagu sebagai pakan ruminansia melalui biofermentasi dengan jamur tiram. Pleurotus ostreatus dan amoniasi. Bogor Agricultural University.

Tirta, P., Indrianti, N., Ekafitri, R. (2013). Potensi tanaman sagu {Metroxylon sp.) dalam mendukung ketahanan pangan di Indonesia. Jurnal Pangan, vol. 22, no. 1, 61-76, DOI: 10.33964/jp.v22i1.78.

Prastowo, B. (2015). Potensi sektor pertanian sebagai penghasil dan pengguna energi terbarukan. Perspektif, vol. 6, no. 2, 85-93, DOI: 10.21082/p.v6n2.2007.

Gunam, I.B.W., Wartini, N.M., Anggreni, A., Suparyana, P.M. (2011). Delignifikasi ampas tebu dengan larutan natrium hidroksida sebelum proses sakaraifikasi secara enzimatis menggunakan enzim selulase kasar dari Aspergillus niger Fnu 6018. Jurnal Teknologi Indonesia, vol. 34, no. 3, 24-32.

Mardina, P., Talalangi, A.I., Sitinjak, J.F., Nugroho, A., Fahrizal, M.R. (2013). Pengaruh proses delignifikasi pada produksi glukosa dari tongkol jagung dengan hidrolisis asam encer. Konversi, vo. 2, no. 2, 17-23.

Mtui, G.Y. (2009). Recent advances in pretreatment of lignocellulosic wastes and production of value added products. African Journal of Biotechnology, vol. 8, no. 8, 1398-1415.

Chandra, R., Takeuchi, H., Hasegawa, T., Kumar, R. (2012). Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, vol. 43, no. 1, 273-282, DOI: 10.1016/j.energy.2012.04.029.

Liew, L.N., Shi, J., Li, Y. (2011). Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresource Technology, vol. 102, no. 19, 8828-8834, DOI: 10.1016/j.biortech.2011. 07.005.

Mirahmadi, K., Kabir, M.M., Jeihanipour, A., Karimi, K., Taherzadeh, M. (2010). Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources, vol. 5, no. 2, 928-938.

Antonopoulou, G., Stamatelatou, K., Lyberatos, G. (2010). Exploitation of rapeseed and sunflower residues for methane generation through anaerobic digestion: the effect of pretreatment. Chemical Engineering Transactions, vol. 20, 253-258, DOI: 10.3303/CET1020043.

Monlau, F., Latrille, E., Da Costa, A.C., Steyer, J.-P., Carrère, H. (2013). Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Applied Energy, vol. 102, 1105-1113, DOI: 10.1016/j.apenergy.2012. 06.042.

Keshwani, D.R., Cheng, J.J. (2010). Microwave‐based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnology Progress, vol. 26, no. 3, 644-652, DOI: 10.1002/btpr.371.

Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi, G.H., Gholami, M., Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, vol. 27, 77-93, DOI: 10.1016/j.rser.2013.06.033.

Cesaro, A., Naddeo, V., Amodio, V., Belgiorno, V. (2012). Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrasonics Sonochemistry, vol. 19, no. 3, 596-600, DOI: 10.1016/j.ultsonch.2011.09.002.

Fatriasari, W., Syafii, W., Wistara, N., Syamsu, K., Prasetya, B. (2016). Lignin and cellulose changes of betung bamboo (Dendrocalamus asper) pretreated microwave heating. International Journal on Advanced Science, Engineering and Information Technology, vol. 6, no. 2, 186-195, DOI: 10.18517/ijaseit.6.2.688.

Sapci, Z. (2013). The effect of microwave pretreatment on biogas production from agricultural straws. Bioresource Technology, vol. 128, 487-494, DOI: 10.1016/j.biortech. 2012.09.094.

Fatriasari, W., Syafii, W., Wistara, N., Syamsu, K., Prasetya, B. (2014). The characteristic changes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment. Int J Renew Energy Dev, vol. 3, no. 2, 133-143, DOI: 10.14710/ijred.3.2. 133-143.

Ishola, M., Millati, R., Syamsiah, S., Cahyanto, M., Niklasson, C., Taherzadeh, M. (2012). Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment. Molecules, vol. 17, no. 12, 14995-15012, DOI: 10.3390/molecules171214995.

Risanto, L., Anita, S., Fatriasari, W., Prasetyo, K. (2012). Biological pretreatment of oil palm empty fruit bunch fiber by mixed culture two white rot fungi. Proceedings of the 5th Indonesian Biotechnology Conference An International Forum. Mataram, Indonesia. pp. 4-7.

Zhang, Q., He, J., Tian, M., Mao, Z., Tang, L., Zhang, J., Zhang, H. (2011). Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresource Technology, vol. 102, no. 19, 8899-8906, DOI: 10.1016/j.biortech.2011. 06.061.

Romano, R.T., Zhang, R., Teter, S., McGarvey, J.A. (2009). The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresource Technology, vol. 100, no. 20, 4564-4571, DOI: 10.1016/j.biortech.2008.12.065.

Ziemiński, K., Romanowska, I., Kowalska, M. (2012). Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management, vol. 32, no. 6, 1131-1137, DOI: 10.1016/j.wasman. 2012.01.016.

Matin, H.H.A. (2018). Biogas production from rice husk waste by using solid state anaerobic digestion (SSAD) method. E3S Web of Conferences. EDP Sciences. vol. 31, pp. 02007, DOI: 10.1051/e3sconf/2018 3102007.

Fatriasari, W., Hermiati, E. (2016). Lignocellulosic biomass for bioproduct: its potency and technology development. Journal of Lignocellulose Technology, vol. 1, no. 1, 1-14.

Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K. (2008). Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Journal of Analytical and Applied Pyrolysis, vol. 82, no. 1, 170-177, DOI: 10.1016/j.jaap.2008.03.007.

Novia, S., Purboyo, G.T. (2017). Pengaruh konsentrasi natrium hidroksida saat pretreatment dan waktu fermentasi terhadap kadar bioetanol dari daun nanas. Jurnal Teknik Kimia, vol. 21, no. 3, 16-26.

Permana, W.S., Nugraha, W.D., Syafrudin, S. (2017). Pengaruh perlakuan pendahuluan NaOH terhadap produksi biogas dari limbah sekam padi dengan metode Solid State Anaerobic Digestion (SS-AD). Jurnal Teknik Lingkungan, vol. 6, no. 3, 1-11.

Saritha, M., Arora, A. (2012). Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian journal of microbiology, vol. 52, no. 2, 122-130, DOI: 10.1007/s12088-011-0199x.

Kinney, T., Masiello, C., Dugan, B., Hockaday, W., Dean, M., Zygourakis, K., Barnes, R. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, vol. 41, 34-43, DOI: 10.1016/j.biombioe.2012.01.033.

Thaiyibah, N., Alimuddin, A., Panggabean, A.S. (2016). Pembuatan dan karakterisasi membran selulosa asetat-pvc dari eceng gondok (Eichhornia crassipes) untuk adsorpsi logam tembaga (II). Jurnal Kimia Mulawarman, vol. 14, no. 1, 29-35.

Zhang, F., Zhu, Z., Wang, B., Wang, P., Yu, G., Wu, M., Chen, W., Ran, W., Shen, Q. (2013). Optimization of Trichoderma harzianum T-E5 biomass and determining the degradation sequence of biopolymers by FTIR in solid-state fermentation. Industrial Crops and Products, vol. 49, 619-627, DOI: 10.106/j.indcrop.2013.05.037.

Nishiyama, S., Okazaki, M., Katsumi, N., Honda, Y., Tsujimoto, M. (2015). Surface charge on sago starch granules. Sago Palm, vol. 23, 77-83.

Sembiring, M.T., Sinaga, T.S. (2003). Arang Aktif (Pengenalan dan Proses Pembuatannya), 1-9.

Xiao, X., Bian, J., Li, M.-F., Xu, H., Xiao, B., Sun, R.C. (2014). Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresource Technology, vol. 159, 41-47, DOI: 10.1016/j.biortech.2014. 02.096.

Rambat, R., Aprilita, N.H., Rusdiarso, B. (2015). Aplikasi limbah kulit buah kakao sebagai media fermentasi asam laktat untuk bahan baku bioplastik. Jurnal Kimia dan Kemasan, vol. 37, no. 2, 111-122, DOI: 10.24817/jkk.v37i2.1820.

Dewi, A.M.P., Kusumaningrum, M.Y., Edowai, D.N., Pranoto, Y., Darmadji, P. (2017). Ekstraksi dan karakterisasi Selulosa dari limbah ampas sagu. Prosiding SNST Fakultas Teknik, vol. 1, no. 1, 6-9.

Xu, G., Wang, L., Liu, J., Wu, J. (2013). FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi. Applied Surface Science, vol. 280, 799-805, DOI: 10.1016/j.apsusc.2013.05.065.

Fang, C., Schmidt, J.E., Cybulska, I., Brudecki, G.P., Frankær, C.G., Thomsen, M.H. (2015). Hydrothermal pretreatment of date palm (Phoenix dactylifera L.) leaflets and rachis to enhance enzymatic digestibility and bioethanol potential. BioMed Research International, vol. 2015, 1-13, DOI: 10.1155/2015/216454.

Rahmidar, L., Wahidiniawati, S., Sudiarti, T. (2018). Pembuatan dan karakterisasi metil selulosa dari bonggol dan kulit nanas (Ananas comosus). Alotrop, vol. 2, no. 1, 88-96.

Nomanbhay, S.M., Hussain, R., Palanisamy, K. (2013). Microwave-assisted alkaline pretreatment and microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. Journal of Sustainable Bioenergy Systems, vol. 3, no. 1, 7-17, DOI: 10.4236/jsbs.2013.31002.

Santoso, B., Sakakura, K., Naito, H., Ohmi, M., Nishimura, Y., Uchiyama, T., Itaya, A., Hisamatsu, M., Ehara, H., Mishima, T. (2015). Effects of micro powder milling on physicochemical properties of sago starch. Journal of Applied Glycoscience, vol. 62, no. 2, 73-80, DOI: 10.5458/jag.jag.JAG-2015_008.

Hidayat, M.R. (2013). Bahan lignoselulosa dalam proses produksi bioetanol. Biopropal Industri, vol. 4, 33-48

Published
2020/04/08
Section
Review Paper