INVESTIGATION OF LANE–LEVEL GNSS POSITIONING OF VEHICLE IN URBAN AREA
Abstract
High quality GNSS (Global Navigation Satellite System) positioning can be useful for numerous engineering tasks, for example, in transport applications concerned to monitoring and optimization of road traffic. In this case lane-level positioning is a relevant task and its solution should satisfy a wide range of users, and thus should be low-cost and easy to use. In this paper the solution of accurate GNSS positioning of the car with the use of differential correction of navigation data in order to provide positioning by the lane level in urban areas of Kazakhstan is investigated. A smartphone is considered as low-cost navigation aid. Navigation data obtained using a smartphone were differentially corrected using the developed software of the Control System for Reference GNSS Station Network relative to one reference station. It is shown that using a smartphone as a navigation aid with further differential correction of data relative to one reference station allows positioning vehicles in motion with an error of 1.4 meters. The result is valuable as a basis for developing intelligent transportation systems.
References
Teunissen, P. J. G. (2007). Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping. Journal of Geodesy, vol. 81, no. 5, 351-358, DOI: 10.1007/s00190-006-0111-3
Cina, A., Dabove, P., Manzino, A.M., Piras, M. (2015). Network Real Time Konematic (NRTK) Positioning - Description, Architectures and Performances. Jin, S. (Eds.), Satellite Positioning - Methods, Models and Applications. IN-TECH, London, p. 23-45, DOI: 10.5772/59083
Kouba, J., Heroux, P. (2001). Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solution, vol. 5, no. 2, 12-28, DOI: 10.1007/PL00012883
Soycan, M., Ata, E. (2011). Precise point positioning versus traditional solution for GNSS networks. Scientific research and essays, vol. 6, no. 4, 799-808.
Leick, A., Rapoport, L., Tatarnikov, D. (2015). GPS Satellite Surveying.Wiley, New Jersey, DOI: 10.1002/9781119018612
Kuzmin, Yu.O. (2019). Recent Geodynamics: from Crustal Movements to Monitoring Critical Objects. Izvestiya, Physics of the Solid Earth, vol. 55, no. 1, 65-86, DOI: 10.1134/S106935131901004X
Dabove, P. (2019). The usability of GNSS mass-market receivers for cadastral surveys considering RTK and NRTK techniques. Geodesy and Geodynamics, vol. 10, no. 4, 282-289, DOI: 10.1016/j.geog.2019.04.006
Zhang, N., Wang, M., Wang, N. (2002). Precision agriculture - A worldwide overview. Computers and Electronics in Agriculture, vol. 36, no. 2-3, 113-132, DOI: 10.1016/S0168-1699(02)00096-0
Guo, J., Li, X., Li, Z., Hu, L., Yang, G., Zhao, Ch., Fairbairn, D., Watson, D., Ge, M. (2018). Multi-GNSS precise point positioning for precision agriculture. Precision Agriculture, vol. 19, no. 5, 895-911, DOI: 10.1007/s11119-018-9563-8
Cina, A., Piras, M. (2015). Performance of low-cost GNSS receiver for landslides monitoring: test and results. Geomatics, Natural Hazards and Risk, vol. 6, no. 5-7, 497-514, DOI: 10.1080/19475705.2014.889046
Awange, J.L. (2012). Environmental Monitoring Using GNSS. Environmental Science and Engineering. Springer, Heidelberg.
Murrian, M., Gonzalez, C.W., Humphreys, T.E., Pesnya, K.M., Shepard, D.P., Kerns, A.J. (2016). Low-cost precise point positioning for automated vehicle. GPS World, vol. 27, no. 9, 32-39.
Patrik, A., Utama, G., Gunawan, A.A.S., Chowanda, A., Suroso, J.S., Shofiyanti, R., Budiharto, W. (2019). GNSS-based navigation systems of autonomous drone for delivering items. Journal of Big Data, vol. 6, 53, DOI: 10.1186/s40537-019-0214-3
Lovas, T., Wieczynski, A., Baczyncka, M., Perski, A., Kertész, I., Berenyi, A., Barsi, Á., Beeharee, A.K. (2011). Positioning for Next Generation Intelligent Transport Systems Services in SafeTRIP. The American Society for Photogrammetry and Remote Sensing Annual Conference.
Marais, J., Ambellouis, S., Flancquart, A., Lefebvre, S., Meurie, C., Ruichek, Y. (2018). Accurate Localisation Based on GNSS and Propagation Knowledge for Safe Applications in Guided Transport. Procedia - Social and Behavioral Sciences, vol. 48, 796-805, DOI: 10.1016/j.sbspro.2012.06.1057
Du, J., Barth, M.J. (2008). Next-Generation Automated Vehicle Location Systems: Positioning at the Lane Level. IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1, 48-57, DOI: 10.1109/TITS.2007.908141
Gu, Y., Hsu, L.T., Kamijo, S. (2018). Towards lane-level traffic monitoring in urban environment using precise probe vehicle data derived from three-dimensional map aided differential GNSS. IATSS Research, vol. 42, no. 4, 248-258,DOI: 10.1016/j.iatssr.2018.03.001
Miucic, R. (2018). Connected Vehicles: Intelligent Transportation Systems. Springer, Cham, DOI: 10.1007/978-3-319-94785-3
Garrido-Carretero, M. S., de Lacy-Perez de los Cobos, M. C., Borque-Arancon, M. J., Ruiz-Armenteros, A.M., Moreno-Guerrero, R., Gil-Cruz, A.J. (2019). Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: a feasible option in geomatics. Measurement, vol. 137, 168-178, DOI: 10.1016/j.measurement.2019.01.045
Mahato, S., Santra, A., Bose, A., Mondal, R., Khan, S.A. (2018). Low-cost GNSS Receivers for Geodetic Applications. National Level Conference on the Application of Geospatial Technology in Research and Development, p. 31-32.
Biagi, L., Grec, F.C., Negretti, M. Low-Cost GNSS Receivers for Local Monitoring: Experimental Simulation, and Analysis of Displacements. Sensors. 2016, vol. 16, no. 12, 2140, DOI: 10.3390/s16122140
Antonov, D.A., Zharkov, M.V., Kuznetsov, I.M., Chernodubov, A.Yu. (2016). Vehicle navigation system accuracy and noise immunity improvement techniques. Trudy MAI, no. 90, 13.
Ben-Monshe, B., Elkin, E., Levi, H., Weissman, A. (2011). Improving Accuracy of GNSS Devices in Urban Canyons. Proceedings of the 23rd Annual Canadian Conference on Computational Geometry.
Li, X., Jiang, R., Song, X., Li, B. (2017). A Tightly Coupled Positioning Solution for Land Vehicles in Urban Canyons. Journal of Sensors, vol. 2017, DOI: 10.1155/2017/5965716
Elazab, M., Noureldin, A., Hassanein, H. S. (2017). Integrated cooperative localization for Vehicular networks with partial GPS access in Urban Canyons. Vehicular Communications, vol. 9, 242-253, 10.1016/j.vehcom.2016.11.011
Sun, Q.Ch., Xia, J.C., Foster, J., Falkmer, T., Lee, H. (2017). Pursuing Precise Vehicle Movement Trajectory in Urban Residential Area Using Multi-GNSS RTK Tracking. Transportation Research Procedia, vol. 25, 2356-2372, DOI: 10.1016/j.trpro.2017.05.255
Tradacete, M., Saez, A., Arango, J.F., Huelamo, C.G., Revenga, P., Barea, R., Lopez-Guillen, E., Bergasa, L.M. (2018). Positioning System for an Electric Autonomous Vehicle Based on the Fusion of Multi-GNSS RTK and Odometry by Using an Extented Kalman Filter. The 19th International Workshop of Physical Agents - Advances in Physical Agents, p. 16-33, DOI: 10.1007/978-3-319-99885-5_2
Zhang, K., Jiao, W., Wang, L., Li, Z., Li, J., Kai, Z. (2019). Smart-RTK: Multi-GNSS kinematic positioning approach on android smart devices with Doppler-smoothed-code filter and constant acceleration model. Advances in Space Research, vol. 64, no. 9, 1662-1674, DOI: 10.1016/j.asr.2019.07.043
Wang, L., Li, Z., Zhao, J., Zhou, K., Wang, Z., Yuan, H. (2016). Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services. Sensors, vol. 16, no. 12, 2201, DOI: 10.3390/s16122201
Specht, C., Dąbrowski, P., Pawelski, J., Specht, M, Szot, T. (2019). Comparative Analysis of Positioning Accuracy of GNSS Receivers of Samsung Galaxy Smartphones in Marine Dynamic Measurements. Advances in Space Research, vol. 63, no. 9, 3018-3028, DOI: 10.1016/j.asr.2018.05.019
Liu, W., Shi, X., Zhu, F., Tao, X., Wang, F. (2019). Quality analysis of multi-GNSS raw observations and a velocity-aided positioning approach based on smartphones. Advances in Space Research, vol. 63, no. 8, 2358-2377, DOI: 10.1016/j.asr.2019.01.004