DESIGN AND HYDRODYNAMIC ANALYSIS OF HORIZONTAL-AXIS HYDROKINETIC TURBINES WITH THREE DIFFERENT HYDROFOILS BY CFD
Abstract
The generation of electrical energy using only the movement of water has gained importance in recent years due to its low environmental and social impact. Some of the most used turbines for the extraction of energy by this means are the horizontal axis hydrokinetics, being an emerging technology more studies are required to improve the understanding and functioning of these devices. In this context, the hydrodynamic study to obtain the characteristic curves of the turbines are fundamental. This article presents the design and hydrodynamic analysis for three horizontal axis tri-blade hydrokinetic turbine rotors with commercial profiles (NACA 4412, EPPLER E817, and NRELS802). The Blade Element Momentum (BEM) was used to design three rotors. These geometries were exported to the ANSYS® program where two control volumes were built, which were discretized until the mesh independence was achieved, to guarantee that the results of the simulation do not depend on the discretization of the control volume. The computational fluid dynamics (CFD) were used to observe the behavior of the fluid by varying the speed of rotation of the turbines from 0.1 rad s-1 to 40 rad s-1, obtaining a power coefficient of 0.390 to 0.435. Equivalent to higher powers of 105W. Also, it is evident that for the same conditions the rotor designed with the EPPLER E817 profile presents better performance than built with the NACA4412 and NREL S802.
References
Khan, M. J., Bhuyan, G., Iqbal, M. T., & Quaicoe, J. E. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, vol. 86, no. 10, 1823–1835, DOI:10.1016/j.apenergy.2009.02.017
Djorup, S., Thellufsen, J. Z., & Sorknaes, P. (2018). The electricity market in a renewable energy system. Energy, vol. 162, 148–157, DOI:10.1016/j.energy.2018.07.100
Nicolli, F., & Vona, F. (2019). Energy market liberalization and renewable energy policies in OECD countries. Energy Policy, vol. 128, 853–867, DOI:10.1016/j.enpol.2019.01.018
Erdiwansyah, Mamat, R., Sani, M. S. M., & Sudhakar, K. (2019). Renewable energy in Southeast Asia: Policies and recommendations. Science of The Total Environment, vol. 670, 1095–1102, DOI:10.1016/j.scitotenv.2019.03.273
Hansen, K., Breyer, C., & Lund, H. (2019). Status and Perspectives on 100% Renewable Energy Systems. Energy, vol. 175, 471–480, DOI:10.1016/j.energy.2019.03.092
Guney, M. S., & Kaygusuz, K. (2010). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, vol. 14, no. 9, 2996–3004. DOI:10.1016/j.rser.2010.06.016
Hoq, T., Nawshad, U. A., Islam, N., Syfullah, K., Rahman, R. (2011). Micro Hydro Power : Promising Solution for Off-grid Renewable Energy Source. International Journal of Scientific & Engineering Research, vol. 2, no. 12, 2–6.
Woodruff, A. (2007). An economic assessment of renewable energy options for rural electrification in Pacific Island Countries. Suva: SOPAC. Fiji Islands.
Khan, M. J., Iqbal, M. T., & Quaicoe, J. E. (2008). River current energy conversion systems: Progress, prospects and challenges. Renewable and Sustainable Energy Reviews, vol. 12, no. 8, 2177–2193, DOI:10.1016/j.rser.2007.04.016
Vermaak, H. J., Kusakana, K., & Koko, S. P. (2014). Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renewable and Sustainable Energy Reviews, vol. 29, 625–633, DOI:10.1016/j.rser.2013.08.066.
Kaufmann, N., Carolus, T. H., & Starzmann, R. (2017). An enhanced and validated performance and cavitation prediction model for horizontal axis tidal turbines. International Journal of Marine Energy, vol. 19, 145–163, DOI:10.1016/j.ijome.2017.07.003
Betancur, J. D., Ruiz, A., Valdes, M. J. (2019). Cavitation in materials used in the manufacture of hydraulic turbines : review. International Journal of Civil Engineering and Technology, vol. 10, no. 04, 2251–2258.
Wang, W.-Q., Yin, R., & Yan, Y. (2018). Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy, vol. 133, 91–102, DOI:10.1016/j.renene.2018.09.106
Liu, P., Yu, G., Zhu, X., & Du, Z. (2014). Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modeling. Renewable Energy, vol. 69, 402–409, DOI:10.1016/j.renene.2014.03.066
Li, X., Yang, K., Bai, J., & Xu, J. (2016). A new optimization approach to improve the overall performance of thick wind turbine airfoils. Energy, vol. 116, 202–213, DOI:10.1016/j.energy.2016.09.108
Shahsavarifard, M., & Bibeau, E. L. (2020). Performance characteristics of shrouded horizontal axis hydrokinetic turbines in yawed conditions. Ocean Engineering, vol. 197, DOI:10.1016/j.oceaneng.2020.106916
Yavuz, T., Koc, E., Kılkıs, B., Erol, O., Balas, C., & Aydemir, T. (2015). Performance analysis of the airfoil-slat arrangements for hydro and wind turbine applications. Renewable Energy, vol. 74, 414–421, DOI:10.1016/j.renene.2014.08.049
Goundar, J. N., Ahmed, M. R., & Lee, Y.-H. (2012). Numerical and experimental studies on hydrofoils for marine current turbines. Renewable Energy, vol. 42, 173–179, DOI:10.1016/j.renene.2011.07.048
Abutunis, A., Taylor, G., Fal, M., Chandrashekhara, K. (2020). Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system. Renewable Energy, vol. 157, 232–245, DOI:10.1016/j.renene.2020.05.010
P Singh, P. M., & Choi, Y.-D. (2014). Shape design and numerical analysis on a 1 MW tidal current turbine for the south-western coast of Korea. Renewable Energy, vol. 68, 485–493, DOI:10.1016/j.renene.2014.02.032
Kim, S.-J., Singh, P. M., Hyun, B.-S., Lee, Y.-H., & Choi, Y.-D. (2017). A study on the floating bridge type horizontal axis tidal current turbine for energy independent islands in Korea. Renewable Energy, vol. 112, 35–43, DOI:10.1016/j.renene.2017.05.025
Zhu, W. J., Shen, W. Z., & Sorensen, J. N. (2014). Integrated airfoil and blade design method for large wind turbines. Renewable Energy, vol. 70, 172–183, DOI:10.1016/j.renene.2014.02.057
Aguilar, J., Rubio-Clemente, A., Velasquez, L., & Chica, E. (2019). Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine. Energies, vol. 12, no. 24, 4679, DOI:10.3390/en12244679
Chica, E., Aguilar, J., Rubio-Clemente, A. (2019). Analysis of a lift augmented hydrofoil for hydrokinetic turbines. 17th International Conference on Renewable Energies and Power Quality, vol. 17, 49–55.
Mycek, P., Gaurier, B., Germain, G., Pinon, G., & Rivoalen, E. (2014). Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renewable Energy, vol. 66, 729–746, DOI:10.1016/j.renene.2013.12.036
MIT, Drela, M. (2013). XFOIL, from http://web.mit.edu/drela/Public/web/xfoil/.
Jeffcoate, P., Whittaker, T., Boake, C., & Elsaesser, B. (2016). Field tests of multiple 1/10 scale tidal turbines in steady flows. Renewable Energy, vol. 87, 240–252, DOI:10.1016/j.renene.2015.10.004
Reviol, T., Kluck, S., & Bohle, M. (2018). A new design method for propeller mixers agitating non-Newtonian fluid flow. Chemical Engineering Science, vol. 190, 320–332, DOI:10.1016/j.ces.2018.06.033
Shi, W., Atlar, M., Norman, R., Aktas, B., & Turkmen, S. (2016). Numerical optimization and experimental validation for a tidal turbine blade with leading-edge tubercles. Renewable Energy, vol. 96, 42–55, DOI:10.1016/j.renene.2016.04.064
Ibrahim, G. M., Pope, K., & Muzychka, Y. S. (2018). Effects of blade design on ice accretion for horizontal axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, vol. 173, 39–52, DOI:10.1016/j.jweia.2017.11.024
Betancur, J. D., Ardila, J. G., Ruiz, A., Chica, E. L. (2019). Aerodynamic profiles for applications in horizontal axis hydrokinetic turbines. International Journal of Mechanical Engineering and Technology, vol. 10, no. 3, 1962–1973.
Tian, W., Mao, Z., & Ding, H. (2017). Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering, vol. 10, no. 6, pp. 782–793, DOI:10.1016/j.ijnaoe.2017.10.006
Lee, J. H., Park, S., Kim, D. H., Rhee, S. H., Kim, M. C. (2012).Computational methods for performance analysis of horizontal axis tidal stream turbines. Applied Energy, vol. 98, pp. 512–523, DOI:10.1016/j.apenergy.2012.04.018
Zhu, F., Ding, L., Huang, B., Bao, M., & Liu, J.-T. (2020). Blade design and optimization of a horizontal axis tidal turbine. Ocean Engineering, vol. 195, DOI:10.1016/j.oceaneng.2019.106652