DESIGN AND HYDRODYNAMIC ANALYSIS OF HORIZONTAL-AXIS HYDROKINETIC TURBINES WITH THREE DIFFERENT HYDROFOILS BY CFD

  • Juan Diego Betancur Instituto Tecnológico Metropolitano, Department of Mechatronics and Electromechanical, Medellín, Colombia
  • Juan Gonzalo Ardila Marin Universidad Surcolombiana, Department Agricultural Engineering, Neiva, Colombia
  • Edwin Lenin Chica Arrieta Universidad de Antioquia, Department of Mechanical Engineering, Medellín, Colombia
Keywords: BEM methodology, Hydraulic energy, Hydrokinetic energy, Renewable energy, Simulation

Abstract


The generation of electrical energy using only the movement of water has gained importance in recent years due to its low environmental and social impact. Some of the most used turbines for the extraction of energy by this means are the horizontal axis hydrokinetics, being an emerging technology more studies are required to improve the understanding and functioning of these devices. In this context, the hydrodynamic study to obtain the characteristic curves of the turbines are fundamental. This article presents the design and hydrodynamic analysis for three horizontal axis tri-blade hydrokinetic turbine rotors with commercial profiles (NACA 4412, EPPLER E817, and NRELS802). The Blade Element Momentum (BEM) was used to design three rotors. These geometries were exported to the ANSYS® program where two control volumes were built, which were discretized until the mesh independence was achieved, to guarantee that the results of the simulation do not depend on the discretization of the control volume. The computational fluid dynamics (CFD) were used to observe the behavior of the fluid by varying the speed of rotation of the turbines from 0.1 rad s-1 to 40 rad s-1, obtaining a power coefficient of 0.390 to 0.435. Equivalent to higher powers of 105W. Also, it is evident that for the same conditions the rotor designed with the EPPLER E817 profile presents better performance than built with the NACA4412 and NREL S802.

References

Khan, M. J., Bhuyan, G., Iqbal, M. T., & Quaicoe, J. E. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, vol. 86, no. 10, 1823–1835, DOI:10.1016/j.apenergy.2009.02.017

Djorup, S., Thellufsen, J. Z., & Sorknaes, P. (2018). The electricity market in a renewable energy system. Energy, vol. 162, 148–157, DOI:10.1016/j.energy.2018.07.100

Nicolli, F., & Vona, F. (2019). Energy market liberalization and renewable energy policies in OECD countries. Energy Policy, vol. 128, 853–867, DOI:10.1016/j.enpol.2019.01.018

Erdiwansyah, Mamat, R., Sani, M. S. M., & Sudhakar, K. (2019). Renewable energy in Southeast Asia: Policies and recommendations. Science of The Total Environment, vol. 670, 1095–1102, DOI:10.1016/j.scitotenv.2019.03.273

Hansen, K., Breyer, C., & Lund, H. (2019). Status and Perspectives on 100% Renewable Energy Systems. Energy, vol. 175, 471–480, DOI:10.1016/j.energy.2019.03.092

Guney, M. S., & Kaygusuz, K. (2010). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, vol. 14, no. 9, 2996–3004. DOI:10.1016/j.rser.2010.06.016

Hoq, T., Nawshad, U. A., Islam, N., Syfullah, K., Rahman, R. (2011). Micro Hydro Power : Promising Solution for Off-grid Renewable Energy Source. International Journal of Scientific & Engineering Research, vol. 2, no. 12, 2–6.

Woodruff, A. (2007). An economic assessment of renewable energy options for rural electrification in Pacific Island Countries. Suva: SOPAC. Fiji Islands.

Khan, M. J., Iqbal, M. T., & Quaicoe, J. E. (2008). River current energy conversion systems: Progress, prospects and challenges. Renewable and Sustainable Energy Reviews, vol. 12, no. 8, 2177–2193, DOI:10.1016/j.rser.2007.04.016

Vermaak, H. J., Kusakana, K., & Koko, S. P. (2014). Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renewable and Sustainable Energy Reviews, vol. 29, 625–633, DOI:10.1016/j.rser.2013.08.066.

Kaufmann, N., Carolus, T. H., & Starzmann, R. (2017). An enhanced and validated performance and cavitation prediction model for horizontal axis tidal turbines. International Journal of Marine Energy, vol. 19, 145–163, DOI:10.1016/j.ijome.2017.07.003

Betancur, J. D., Ruiz, A., Valdes, M. J. (2019). Cavitation in materials used in the manufacture of hydraulic turbines : review. International Journal of Civil Engineering and Technology, vol. 10, no. 04, 2251–2258.

Wang, W.-Q., Yin, R., & Yan, Y. (2018). Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy, vol. 133, 91–102, DOI:10.1016/j.renene.2018.09.106

Liu, P., Yu, G., Zhu, X., & Du, Z. (2014). Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modeling. Renewable Energy, vol. 69, 402–409, DOI:10.1016/j.renene.2014.03.066

Li, X., Yang, K., Bai, J., & Xu, J. (2016). A new optimization approach to improve the overall performance of thick wind turbine airfoils. Energy, vol. 116, 202–213, DOI:10.1016/j.energy.2016.09.108

Shahsavarifard, M., & Bibeau, E. L. (2020). Performance characteristics of shrouded horizontal axis hydrokinetic turbines in yawed conditions. Ocean Engineering, vol. 197, DOI:10.1016/j.oceaneng.2020.106916

Yavuz, T., Koc, E., Kılkıs, B., Erol, O., Balas, C., & Aydemir, T. (2015). Performance analysis of the airfoil-slat arrangements for hydro and wind turbine applications. Renewable Energy, vol. 74, 414–421, DOI:10.1016/j.renene.2014.08.049

Goundar, J. N., Ahmed, M. R., & Lee, Y.-H. (2012). Numerical and experimental studies on hydrofoils for marine current turbines. Renewable Energy, vol. 42, 173–179, DOI:10.1016/j.renene.2011.07.048

Abutunis, A., Taylor, G., Fal, M., Chandrashekhara, K. (2020). Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system. Renewable Energy, vol. 157, 232–245, DOI:10.1016/j.renene.2020.05.010

P Singh, P. M., & Choi, Y.-D. (2014). Shape design and numerical analysis on a 1 MW tidal current turbine for the south-western coast of Korea. Renewable Energy, vol. 68, 485–493, DOI:10.1016/j.renene.2014.02.032

Kim, S.-J., Singh, P. M., Hyun, B.-S., Lee, Y.-H., & Choi, Y.-D. (2017). A study on the floating bridge type horizontal axis tidal current turbine for energy independent islands in Korea. Renewable Energy, vol. 112, 35–43, DOI:10.1016/j.renene.2017.05.025

Zhu, W. J., Shen, W. Z., & Sorensen, J. N. (2014). Integrated airfoil and blade design method for large wind turbines. Renewable Energy, vol. 70, 172–183, DOI:10.1016/j.renene.2014.02.057

Aguilar, J., Rubio-Clemente, A., Velasquez, L., & Chica, E. (2019). Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine. Energies, vol. 12, no. 24, 4679, DOI:10.3390/en12244679

Chica, E., Aguilar, J., Rubio-Clemente, A. (2019). Analysis of a lift augmented hydrofoil for hydrokinetic turbines. 17th International Conference on Renewable Energies and Power Quality, vol. 17, 49–55.

Mycek, P., Gaurier, B., Germain, G., Pinon, G., & Rivoalen, E. (2014). Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renewable Energy, vol. 66, 729–746, DOI:10.1016/j.renene.2013.12.036

MIT, Drela, M. (2013). XFOIL, from http://web.mit.edu/drela/Public/web/xfoil/.

Jeffcoate, P., Whittaker, T., Boake, C., & Elsaesser, B. (2016). Field tests of multiple 1/10 scale tidal turbines in steady flows. Renewable Energy, vol. 87, 240–252, DOI:10.1016/j.renene.2015.10.004

Reviol, T., Kluck, S., & Bohle, M. (2018). A new design method for propeller mixers agitating non-Newtonian fluid flow. Chemical Engineering Science, vol. 190, 320–332, DOI:10.1016/j.ces.2018.06.033

Shi, W., Atlar, M., Norman, R., Aktas, B., & Turkmen, S. (2016). Numerical optimization and experimental validation for a tidal turbine blade with leading-edge tubercles. Renewable Energy, vol. 96, 42–55, DOI:10.1016/j.renene.2016.04.064

Ibrahim, G. M., Pope, K., & Muzychka, Y. S. (2018). Effects of blade design on ice accretion for horizontal axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, vol. 173, 39–52, DOI:10.1016/j.jweia.2017.11.024

Betancur, J. D., Ardila, J. G., Ruiz, A., Chica, E. L. (2019). Aerodynamic profiles for applications in horizontal axis hydrokinetic turbines. International Journal of Mechanical Engineering and Technology, vol. 10, no. 3, 1962–1973.

Tian, W., Mao, Z., & Ding, H. (2017). Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering, vol. 10, no. 6, pp. 782–793, DOI:10.1016/j.ijnaoe.2017.10.006

Lee, J. H., Park, S., Kim, D. H., Rhee, S. H., Kim, M. C. (2012).Computational methods for performance analysis of horizontal axis tidal stream turbines. Applied Energy, vol. 98, pp. 512–523, DOI:10.1016/j.apenergy.2012.04.018

Zhu, F., Ding, L., Huang, B., Bao, M., & Liu, J.-T. (2020). Blade design and optimization of a horizontal axis tidal turbine. Ocean Engineering, vol. 195, DOI:10.1016/j.oceaneng.2019.106652

Published
2020/10/12
Section
Original Scientific Paper