DESIGNING A TOOL FOR COLD KNURLING OF FINS

  • Andrej Olejnik MSUT “STANKIN”
  • Alexey Kapitanov Director of Economics and Technology Management Institute, Doctor of Technical Sciences, Associate Professor, MSUT “STANKIN”, Russia, Moscow, Vadkovsky Lane, 3A, building 1, 127055
  • Islam Alexandrov Junior Researcher, IDTI RAS, Russia, Moscow, Vadkovsky Lane, 18, building 1a, 127055
  • Aslan Tatarkanov Junior Researcher, IDTI RAS, Russia, Moscow, Vadkovsky Lane, 18, building 1a, 127055

Abstract


Regulating the deformed metal's flow is an important condition for the knurling process. To achieve this, the knurling tool should have a special intake part, where all the main work of plastic deformation would be realized. Depending on the configuration, the fins can be knurled in two ways: either by a radial feed of the tool or an axial feed of a billet (package of billets) or a tool. Using the radial feed method, most types of piece gear parts can be knurled using a more rational radial flow of the deformed metal. However, this process is usually characterized by low productivity. The axial knurling method is significantly more productive. In this case, due to the undesirable axial flow of the deformed metal, it flows to the ends of the billets. As a result, it becomes necessary to introduce additional machining operations and metal waste increases. The article provides an analysis of existing methods of forming fins on a cylindrical surface. The authors analyze the advantages and disadvantages of applying the methods in modern conditions, select the most appropriate method, and substantiate the principles of developing tools for cold knurling of fins. The purpose of the work was to develop a tool for determining the forces acting in the cold knurling process and study their influence on the characteristics of the final products.

References

[1] Hakansson, H. (2015). Industrial Technological Development. Routledge Revivals, London. doi:10.4324/9781315724935.
[2] Hitomi, K. (2017). Manufacturing Systems Engineering. Routledge, London. doi:10.1201/9780203748145.
[3] Zheng, D. (2015). Industrial Engineering and Manufacturing Technology. Proceedings of the 2014 International Conference on Industrial Engineering and Manufacturing Technology (ICIEMT 2014), July 10-11, 2014, Shanghai, China. doi:10.1201/b18144.
[4] Kopp, R. (1996). Some current development trends in metal-forming technology. Journal of Materials Processing Technology, 60(1-4), 1–9. doi: 10.1016/0924-0136(96)02301-1.
[5] Semenov, A.B., Muranov, A.N., Kutsbakh, A.A., Semenov, B.I. (2017). Injection molding of structured multiphase materials. RUDN Journal of Engineering Researches, 18(4), 407–425. doi: 10.22363/2312-8143-2017-18-4-407-425.
[6] Wais, P. (2012). Fin-Tube Heat Exchanger Optimization. Heat Exchangers - Basics Design Applications. InTech, Rijeka. doi:10.5772/33492.
[7] Salunke, K.A., Lambhate, V., Jadhav, U., Kumbhar, S. (2016). Optimization of Pipe Finning Process with Engineering Principles. International Journal of Science and Research (IJSR), 5(3), 270–272. doi: 10.21275/v5i3.nov161849.
[8] Kocurek, R., Adamiec, J. (2013). Manufacturing Technologies of Finned Tubes. Advances in Materials Sciences, 13(3). doi: 10.2478/adms-2013-0009.
[9] Huang, H., Ji, C., Yang, Z., Yan, M. (2017). Implementation and forming mechanism of the solid-liquid cast-rolling bonding (SLCRB) process for steel/Al clad pipes. Journal of Manufacturing Processes, 30, 343-352.
[10] Huang, H. (2017). Research on Cast-rolling Force Calculation Model in Solid-liquid Cast-rolling Bonding (SLCRB) Process of Bimetallic Clad Pipe. Journal of Mechanical Engineering, 53(10), 10. doi: 10.3901/jme.2017.10.010.
[11] Semenov, A.B., Kutsbakh, A.A., Muranov, A.N., Semenov, B.I. (2019). Metallurgy of thixotropic materials: the experience of organizing the processing of structural materials in engineering Thixo and MIM methods. IOP Conference Series: Materials Science and Engineering, vol. 683, 012056. doi:10.1088/1757-899x/683/1/012056.
[12] Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2019). Internally Finned Tubes and Spirally Fluted Tubes. SpringerBriefs in Applied Sciences and Technology, 85–126. doi: 10.1007/978-3-030-20748-9_6.
[13] Naphon P. (2007). Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins. International Communications in Heat and Mass Transfer, 34(3), 321–330. doi: 10.1016/j.icheatmasstransfer.2006.11.009.
[14] Fan, L., Gao, Y., Li, Q., Xu, H. (2012). Quality control on crimping of large diameter welding pipe. Chinese Journal of Mechanical Engineering, 25(6), 1264–1273. doi: 10.3901/cjme.2012.06.1264.
[15] Merkulov, D.V. (2008). Pipe rolling in helical-rolling mills without a guide system. Steel in Translation, 38(7), 580–584. doi: 10.3103/s096709120807022x.
[16] Vydrin, A.V., Shirokov, V.V. (2011). Speed simulation of continuous pipe rolling. Steel in Translation, 41(2), 140–142. doi: 10.3103/s0967091211020215.
[17] Sawicki, S., Dyja, H. (2012). Theoretical and Experimental Analysis of the Bimetallic Ribbed Bars Steel - Steel Resistant to Corrosion Rolling Process. Archives of Metallurgy and Materials, 57(1). doi: 10.2478/v10172-011-0153-2.
[18] Sadeghi, M. (2017). High frequency resistance welded finned tubes technologies in heat recovery steam generator boilers. Journal of Environmental Friendly Materials, 1(1), 46-57.
[19] Wang, S., Cheng, S., Yu, H., Rao, Z., Liu, Z. (2013). Experimental investigation of Al–Cu composed tube–fin heat exchangers for air conditioner. Experimental Thermal and Fluid Science, 51, 264–270. doi: 10.1016/j.expthermflusci.2013.08.007.
[20] Čarija, Z., Franković, B., Perčić, M., Čavrak, M. (2014). Heat transfer analysis of fin-and-tube heat exchangers with flat and louvered fin geometries. International Journal of Refrigeration, vol. 45, 160–167. doi:10.1016/j.ijrefrig.2014.05.026.
[21] Galushchak, I. (2017). Experimental investigation of heat transfer in interfin channels of punched spiral tube finning. Technology Transfer: Fundamental Principles and Innovative Technical Solutions, 12–14. doi: 10.21303/2585-6847.2017.00473.
[22] Filippov, E.B., Cherepennikov, G.B., Leshchenko, T.G. (2010). A numerical study of the thermal efficiency of a tubular heating surface with split spiral-tape finning. Thermal Engineering, 57(7), 598–602. doi: 10.1134/s0040601510070116.
[23] Kuzma-Kichta, Y.A., Savel’ev, P.A., Koryakin, S.A., Dobrovol’skii, A.K. (2007). Studying of heat-transfer enhancement in tubes with screw knurling. Thermal Engineering, 54(5), 407–409. doi: 10.1134/s0040601507050138.
[24] Paquet, A. (1993). Comparison of Brazing Processes for Aluminum Heat Exchanger Manufacturing. SAE Technical Paper Series. doi: 10.4271/931093.
[25] Jiang, Z.Y. (2011). Mechanics of cold rolling of thin strip. Numerical analysis–Theory and application, IntechOpen, Rijeka, 439-462. doi:10.5772/23344.
[26] Afanasyev, A.E., Kargin, V.R., Kargin, B.V. (2016). Force conditions for light-alloy spiral-finned drill pipe extrusion. Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy), (2), 58–63. doi: 10.17073/0021-3438-2016-2-58-63.
[27] Wagner, J.R., Mount, E.M., Giles, H.F. (2014). Pipe and Tubing Extrusion. Extrusion, 573–583. doi: 10.1016/b978-1-4377-3481-2.00050-8.
[28] Wang, F., Liang, C., Yang, M., Fan, C., Zhang, X. (2015). Effects of surface characteristic on frosting and defrosting behaviors of fin-tube heat exchangers. Applied Thermal Engineering, vol. 75, 1126–1132. doi:10.1016/j.applthermaleng.2014.10.090.
[29] Kim, K., Lee, K.-S. (2013). Frosting and defrosting characteristics of surface-treated louvered-fin heat exchangers: Effects of fin pitch and experimental conditions. International Journal of Heat and Mass Transfer, vol. 60, 505–511. doi:10.1016/j.ijheatmasstransfer.2013.01.036.
[30] Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H. (2014). Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 60, 130–207. doi: 10.1016/j.pmatsci.2013.09.002.
[31] Bower, A.F., Johnson, K.L. (1989). The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact. Journal of the Mechanics and Physics of Solids, 37(4), 471–493. doi:10.1016/0022-5096(89)90025-2.
[32] McDowell, D.L., Moyar, G.J. (1990). Effects of non-linear kinematic hardening on plastic deformation and residual stresses in rolling line contact. Mechanics and Fatigue in Wheel/Rail Contact, 19–37. doi:10.1016/b978-0-444-88774-0.50006-7.
[33] Yoshimi, T., Matsumoto, S., Tozaki, Y., Yoshida, T., Sonobe, H., Nishide, T. (2009). Work Hardening and Change in Contact Condition of Rolling Contact Surface with Plastic Deformation. Tribology Online, vol. 4, no. 1, 1–5. doi:10.2474/trol.4.1.
[34] Johnson, K.L. (2000). Plastic Deformation in Rolling Contact. Rolling Contact Phenomena, 163–201. doi:10.1007/978-3-7091-2782-7_3.
[35] Liu, B., Tang, C.L., Gu, T.Q. (2014). A Method to Avoid Strip Breakage for Thin Strip Steel in Cold Rolling. Advanced Materials Research, 1004-1005, 1211–1215. doi: 10.4028/www.scientific.net/amr.1004-1005.1211.
[36] Jiang, Z.Y., Du, X.Z., Du, Y.B., Wei, D.B., Hay, M. (2010). Strip Shape Analysis of Asymmetrical Cold Rolling of Thin Strip. Advanced Materials Research, 97-101, 81–84. doi: 10.4028/www.scientific.net/amr.97-101.81.
[37] Aljabri, A., Jiang, Z.Y., Wei, D.B. (2014). Analysis of Thin Strip Profile during Asymmetrical Cold Rolling with Roll Crossing and Shifting Mill. Advanced Materials Research, 894, 212–216. doi: 10.4028/www.scientific.net/amr.894.212.
[38] Zhang, P., Kou, S., Lin, B., Wang, Y. (2014). Optimization for radial knurling connection process of assembled camshaft using response surface method. The International Journal of Advanced Manufacturing Technology, 77(1-4), 653–661. doi: 10.1007/s00170-014-6486-z.
[39] Feng, C.-X.J., Wang, X.-F. (2004). Data mining techniques applied to predictive modeling of the knurling process. IIE Transactions, 36(3), 253–263. doi: 10.1080/07408170490274214.
[40] Song, M., Liu, X.H., Tang, D.L. (2014). Texture Evolution of Commercially Pure Copper during Ultra-Thin Strip Rolling. Advanced Materials Research, 941-944, 1532–1536. doi: 10.4028/www.scientific.net/amr.941-944.1532.
Published
2020/05/07
Section
Original Scientific Paper